【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,則⊙D的半徑為 ;扇形DAC的圓心角度數(shù)為 ;
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
【答案】(1)(2,0);(2)2,90;(3)
【解析】
(1)作AB、BC的垂直平分線,兩垂直平分線的交代即為點D,再根據(jù)坐標軸上點的坐標特征可得到點D的坐標;
(2)連接DA、DC,利用勾股定理求出AD的長,即⊙D的半徑;再利用SAS證得△AOD≌△DEC,根據(jù)全等三角形的性質(zhì)可得∠OAD=∠CDE,然后求出∠ADC的度數(shù)即可;
(3)設(shè)出圓錐的底面半徑,再根據(jù)圓錐的底面周長等于側(cè)面展開圖即扇形的弧長,即可求出該圓錐的底面半徑.
(1)如圖,分別作AB、BC的垂直平分線,兩線交于點D,
∴D點的坐標為(2,0).
(2)連接DA、DC,如圖,
則AD=,
即⊙D的半徑為.
∵OD=CE,OA=DE=4,
∠AOD=∠CEO=90°,
∴△AOD≌△DEC,
∴∠OAD=∠CDE,
∴∠ADO+∠CDE=∠ADO+∠OAD=90°,
∴∠ADC=90°,
即扇形DAC的圓心角度數(shù)為90°.
(3)設(shè)圓錐的底面半徑是r,
則,
∴,
即該圓錐的底面半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件20元,售價為每件30元,每個月可賣出180件:如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價不能高于35元,設(shè)每件商品的售價上漲元(為整數(shù)),每個月的銷售利潤為元。
(1)求與的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍:
(2)每件商品的售價定為多少元時,每個月的利潤恰好是1920元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)圖象過A,B,C三點,點A的坐標為(﹣1,0),點B的坐標為(4,0),點C在y軸正半軸上,且AB=OC.
(1)求點C的坐標;
(2)求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ACB=60○,半徑為2的⊙0切BC于點C,若將⊙O在CB上向右滾動,則當滾動到⊙O與CA也相切時,圓心O移動的水平距離為 ( )
A. 2π B. 4π C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(3,4),將OA繞坐標原點O逆時針轉(zhuǎn)90°至OA/,則點A/的坐標是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,射線BC交⊙O于點D,E是劣弧AD上一點,且,過點E作EF⊥BC于點F,延長FE和BA的延長線交與點G.
(1)證明:GF是⊙O的切線;
(2)若AG=6,GE=6,求△GOE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年9月,我國中小學生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機調(diào)查了若干名學生(每名學生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)某班語文老師想從這四大名著中隨機選取兩部作為學生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com