精英家教網 > 初中數學 > 題目詳情

【題目】如圖,⊙O△ACD的外接圓,AB是直徑,過點D作直線DE∥AB,過點B作直線BE∥AD,兩直線交于點E,如果∠ACD=45°⊙O的半徑是4cm

1)請判斷DE⊙O的位置關系,并說明理由;

2)求圖中陰影部分的面積(結果用π表示).

【答案】1DE⊙O相切,證明見解析;(2)(24-4πcm2

【解析】

1)連接OD,根據圓周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判斷△ADB為等腰直角三角形,所以OD⊥AB,而DE∥AB,則有OD⊥DE,然后根據切線的判定定理得到DE⊙O的切線.

2)由BE∥ADDE∥AB得到四邊形ABED為平行四邊形,則DE=AB=8cm,然后根據梯形的面積公式和扇形的面積公式,利用S陰影部分=S梯形BODES扇形OBD求得圖中陰影部分的面積.

解:(1DE⊙O相切.理由如下:

連接OD,BD,

∵AB是直徑,

∴∠ADB=90°

∴∠ABD=ACD=45°

∴△ADB為等腰直角三角形.

OAB的中點,

∴OD⊥AB

∵DE∥AB,

∴OD⊥DE

∴DE⊙O的切線.

2∵BE∥AD,DE∥AB,

四邊形ABED為平行四邊形.

∴DE=AB=8cm

=24-4πcm2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形EFGH的頂點在邊長為2的正方形的邊上.若設AE=x,正方形EFGH的面積為y,則y與x的函數關系為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】反比例函數ya0a為常數)和y在第一象限內的圖象如圖所示,點My的圖象上,MCx軸于點C,交y的圖象于點A;MDy軸于點D,交y的圖象于點B,當點My的圖象上運動時,以下結論:①SODBSOCA;②四邊形OAMB的面積不變;③當點AMC的中點時,則點BMD的中點.其中正確結論是( 。

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題情境:

在綜合與實踐課上,老師讓同學們以矩形紙片的剪拼為主題開展數學活動.如圖1,將矩形紙片沿對角線剪開,得到.并且量得,.

操作發(fā)現:

(1)將圖1中的以點為旋轉中心,按逆時針方向旋轉,使,得到如圖2所示的,過點的平行線,與的延長線交于點,則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點為旋轉中心,按逆時針方向旋轉,使、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接、,得到四邊形,發(fā)現它是正方形,請你證明這個結論.

實踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現結論的基礎上,進行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,相交于點,如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電視臺為了解本地區(qū)電視節(jié)目的收視情況,對部分市民開展了你最喜愛的電視節(jié)目的問卷調查(每人只填寫一項),根據收集的數據繪制了兩幅不完整的統計圖(如圖所示),根據要求回答下列問題:

(1)本次問卷調查共調查了________名觀眾;圖②中最喜愛新聞節(jié)目的人數占調查總人數的百分比為________;

(2)補全圖①中的條形統計圖;

(3)現有最喜愛新聞節(jié)目(記為),“體育節(jié)目(記為),“綜藝節(jié)目(記為),“科普節(jié)目(記為)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛兩位觀眾的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,點E,F分別為BC,AB邊的中點.連接AE、DF,兩線交于點H,連接BH并延長,交邊AD于點G.下列結論:①△ABE≌△DAF,②cosBAE=,③S四邊形CDHE=111,④AG=其中正確的是(

A.①③④B.①②③

C.①④D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解:在平面直角坐標系中,若兩點P、Q的坐標分別是P(x1,y1)、

Q(x2,y2),則P、Q這兩點間的距離為|PQ|=.如P(1,2),Q(3,4),則|PQ|==2

對于某種幾何圖形給出如下定義:符合一定條件的動點形成的圖形,叫做符合這個條件的點的軌跡.如平面內到線段兩個端點距離相等的點的軌跡是這條線段的垂直平分線.

解決問題:如圖,已知在平面直角坐標系xOy中,直線y=kx+y軸于點A,點A關于x軸的對稱點為點B,過點B作直線l平行于x軸.

(1)到點A的距離等于線段AB長度的點的軌跡是   

(2)若動點C(x,y)滿足到直線l的距離等于線段CA的長度,求動點C軌跡的函數表達式;

問題拓展:(3)若(2)中的動點C的軌跡與直線y=kx+交于E、F兩點,分別過E、F作直線l的垂線,垂足分別是M、N,求證:①EF是△AMN外接圓的切線;②為定值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸交于點A,BAB2,與y軸交于點C,對稱軸為直線x2

1)求拋物線的函數表達式;

2)設D為拋物線的頂點,連接DA、DB,試判斷ABD的形狀,并說明理由;

3)設P為對稱軸上一動點,要使PCPB的值最大,求出P點的坐標.

查看答案和解析>>

同步練習冊答案