(2004•黑龍江)已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是   
【答案】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.
解答:解:如圖,連接BM,
∵點B和點D關于直線AC對稱,
∴NB=ND,
則BM就是DN+MN的最小值,
∵正方形ABCD的邊長是8,DM=2,
∴CM=6,
∴BM==10,
∴DN+MN的最小值是10.
故答案為10.
點評:考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年中考數(shù)學復習模擬試卷(07)(解析版) 題型:解答題

(2004•黑龍江)下表表示甲、已兩名選手在一次自行車越野賽中,路程y(千米)與時間x(分)變化的圖象(全程)
根據(jù)圖象完成下列問題:
(1)比賽開始多少分鐘,兩人第一次相遇;
(2)這次比賽全程是多少千米?
(3)求比賽開始多少分鐘時,兩人第二次相遇?

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2004•黑龍江)已知:如圖,在平面直角坐標系內(nèi),Rt△ABC的斜邊AB在x軸上,點C的坐標為(0,6),AB=15,∠CBA>∠CAB,且tan∠CAB、tan∠CBA是關于x的方程x2+mx+n=0的兩根,
(1)求m、n的值.
(2)若∠ACB的角平分線交x軸于D,求直線CD的解析式.
(3)在(2)的條件下,直線CD上是否存在點M,過M點作BC的平行線,交y軸于N,使以M、N、B、C為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2004•黑龍江)如圖,在平面直角坐標系中,直線l的解析式為y=,關于x的一元二次方程2x2-2(m+2)x+(2m+5)=0(m>0)有兩個相等的實數(shù)根.
(1)試求出m的值,并求出經(jīng)過點A(0,-m)和D(m,0)的直線解析式;
(2)在線段AD上順次取兩點B、C,使AB=CD=-1,試判斷△OBC的形狀;
(3)設直線l與直線AD交于點P,圖中是否存在與△OAB相似的三角形?如果存在,請直接寫出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《函數(shù)基礎知識》(02)(解析版) 題型:填空題

(2004•黑龍江)請你寫出一個經(jīng)過點(1,1)的函數(shù)解析式   

查看答案和解析>>

科目:初中數(shù)學 來源:2004年黑龍江省中考數(shù)學試卷(解析版) 題型:填空題

(2004•黑龍江)拋物線y=x2+bx+c經(jīng)過A(-1,0),B(3,0)兩點,則這條拋物線的解析式為   

查看答案和解析>>

同步練習冊答案