【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為 .
【答案】P(3,4)或(2,4)或(8,4)
【解析】
試題解析:由題意,當△ODP是腰長為5的等腰三角形時,有三種情況:
(1)如圖所示,PD=OD=5,點P在點D的左側.
過點P作PE⊥x軸于點E,則PE=4.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=5-3=2,
∴此時點P坐標為(2,4);
(2)如圖所示,OP=OD=5.
過點P作PE⊥x軸于點E,則PE=4.
在Rt△POE中,由勾股定理得: OE=,
∴此時點P坐標為(3,4);
(3)如圖所示,PD=OD=5,點P在點D的右側.
過點P作PE⊥x軸于點E,則PE=4.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=5+3=8,
∴此時點P坐標為(8,4).
綜上所述,點P的坐標為:(2,4)或(3,4)或(8,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,點是對角線的中點,點是上一點,且,連接并延長交于點,過點作的垂線,垂足為,交于點.
(1)求證:;
(2)若,解答下列問題:
①求證:;
②當時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱的高是,當圓柱的底面半徑由小到大變化時,圓柱的體積也隨之發(fā)生了變化.
(1)在這個變化中,自變量是______,因變量是______;
(2)寫出體積與半徑的關系式;
(3)當?shù)酌姘霃接?/span>變化到時,通過計算說明圓柱的體積增加了多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x與反比例函數(shù)y=在第一象限內(nèi)的圖像交于點A(m,2),將直線y=2x向下平移后與反比例函數(shù)y=在第一象限內(nèi)的圖像交于點P,且△POA的面積為2.
(1)求k的值;
(2)求平移后的直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖
(1)如圖1,學校A,B在道路MN的異側.在MN上建公交站P,使得P到A,B的距離相等。利用尺規(guī)作圖確定P的位置.
(2)如圖2,學校C,D在道路MN的同側,在MN上建公交站Q,使得Q到C,D的距離的和最短.利用網(wǎng)格確定Q的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點A、B(點A位于點B左側),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.
(1)求點A、B、C的坐標;
(2)設動點N(-2,n),求使MN+BN的值最小時n的值;
(3)P是拋物線上位于x軸上方的一點,請?zhí)骄浚菏欠翊嬖邳cP,使以P、A、B為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,線段BC∥x軸、線段AB∥y軸,點B坐標為(4,3),反比例函數(shù)y=(x>0)的圖像與線段AB交于點D,與線段BC交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,則點B'的縱坐標是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com