【題目】(2016四川省樂山市第24題)如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標;若不存在,請說明理由.
【答案】(1)k=2;(2)D(5,0)或(﹣5,0)或(,0)或D(,0).
【解析】
試題分析:(1)首先根據(jù)反比例函數(shù)與正比例函數(shù)的圖象特征,可知A、B兩點關于原點對稱,則O為線段AB的中點,故△BOC的面積等于△AOC的面積,都等于1,然后由反比例函數(shù)的比例系數(shù)k的幾何意義,可知△AOC的面積等于,從而求出k的值;
(2)先將與聯(lián)立成方程組,求出A、B兩點的坐標,然后分三種情況討論:①當AD⊥AB時,求出直線AD的關系式,令y=0,即可確定D點的坐標;②當BD⊥AB時,求出直線BD的關系式,令y=0,即可確定D點的坐標;③當AD⊥BD時,由O為線段AB的中點,可得OD=AB=OA,然后利用勾股定理求出OA的值,即可求出D點的坐標.
試題解析:(1)∵反比例函數(shù)與正比例函數(shù)的圖象相交于A、B兩點,∴A、B兩點關于原點對稱,∴OA=OB,∴△BOC的面積=△AOC的面積=2÷2=1,又∵A是反比例函數(shù)圖象上的點,且AC⊥x軸于點C,∴△AOC的面積=,∴,∵k>0,∴k=2.故這個反比例函數(shù)的解析式為;
(2)x軸上存在一點D,使△ABD為直角三角形.將與聯(lián)立成方程組得:,解得:,,∴A(1,2),B(﹣1,﹣2),
①當AD⊥AB時,如圖1,
設直線AD的關系式為,將A(1,2)代入上式得:,∴直線AD的關系式為,令y=0得:x=5,∴D(5,0);
②當BD⊥AB時,如圖2,
設直線BD的關系式為,將B(﹣1,﹣2)代入上式得:,∴直線AD的關系式為,令y=0得:x=﹣5,∴D(﹣5,0);
③當AD⊥BD時,如圖3,
∵O為線段AB的中點,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0),
根據(jù)對稱性,當D為直角頂點,且D在x軸負半軸時,D(,0);
故x軸上存在一點D,使△ABD為直角三角形,點D的坐標為(5,0)或(﹣5,0)或(,0)或D(,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2016的坐標為( 。
A. (4032 ,2) B. (6048,2) C. (4032,0) D. (6048,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA=OB=OC=6,過點A的直線AD交BC于點D,交y軸與點G,△ABD的面積為△ABC面積的.
(1)直接寫出點D的坐標;
(2)過點C作CE⊥AD,交AB交于F,垂足為E.
①求證:OF=OG;(3分) ②求點F的坐標.
(3)在(2)的條件下,在第一象限內(nèi)是否存在點P,使△CFP為等腰直角三角形,若存在,直接寫出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOC=90°,∠BOC=60°,OE平分∠BOC,OD平分∠AOB.求:
(1)∠DOE度數(shù);
(2)若∠BOC=α(0<α<90°),其他條件不變,∠DOE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 (1)、(2)都是幾何體的平面展開圖,先想一想,再折一折,然后說出圖 (1)、(2)折疊后的幾何體名稱、底面形狀、側(cè)面形狀、棱數(shù)、側(cè)棱數(shù)與頂點數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、軸分別相交于點C、B,與直線相交于
點A.
(1)點B、點C和點A的坐標分別是(0, )、( ,0)、( , );
(2)求兩條直線與軸圍成的三角形的面積;
(3)在坐標軸上是否存在一點Q,使△OAQ的面積等于6,若存在請直接寫出Q點的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com