【題目】操作實踐
(1)操作1:將矩形ABCD沿對角線AC折疊(如圖1),猜想重疊部分是什么圖形?并驗證你的猜想.連結BE與AC有什么位置關系?
(2)操作2:折疊矩形ABCD,讓點B落在對角線AC上(如圖2),若AD=4,AB=3,請求出線段CE的長度.
【答案】(1)△AFC是等腰三角形.(2)CE=2.5.
【解析】
試題分析:(1)由矩形的性質可知AD∥BC,從而得到∠FAC=∠ACB,由翻折的性質可知∠ACB=∠ACF,于是得到∠FAC=∠FCA,故此可得到△AFC為等腰三角形;
(2)先依據(jù)勾股定理求得AC=5,由翻折的性質可知BE=EF,AF=AB=3,可求得FC=2,設EC=x,則BE=EF=4﹣x,最后在△EFC中由勾股定理可求得EC的長.
解:(1)∵四邊形ABCD為矩形,
∴AD∥BC.
∴∠FAC=∠ACB.
由翻折的性質可知;∠ACB=∠ACF,
∴∠FAC=∠FCA.
∴AF=FC.
∴△AFC是等腰三角形.
(2)在Rt△ABC中,由勾股定理得:AC==5.
∵由翻折的性質可知:BE=EF,AF=AB=3.
∴FC=2,設EC=x,則BE=EF=4﹣x.
在Rt△EFC中,由勾股定理可知;EF2+FC2=EC2,即(x﹣4)2+22=x2.
解得:x=2.5.
∴CE=2.5.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數(shù)y=的圖象過點A(1,6).
(1)求反比例函數(shù)的表達式;
(2)過點A的直線與反比例函數(shù)y=圖象的另一個交點為B,與x軸交于點P,若AP=2PB,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A在y軸上,點B在x軸上,∠ABO=60°,若點D(1,0)且BD=2OD.把△ABO繞著點D逆時針旋轉m°(0<m<180)后,點B恰好落在初始Rt△ABO的邊上,此時的點B記為B′,則點B′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長方體的主視圖與左視圖如圖所示(單位:cm)
(1)根據(jù)圖中的數(shù)據(jù)畫出它的俯視圖,并求出俯視圖的面積;
(2)求這個長方體的體積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省邵陽市第5題)一次函數(shù)y=﹣x+2的圖象不經(jīng)過的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A在數(shù)軸上表示+2,從點A沿數(shù)軸向左平移3個單位到點B,則點B所表示的有理數(shù)是( )
A. 3B. ﹣1 C. 5D.﹣1或3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O點是學校所在位置,A村位于學校南偏東42°方向,B村位于學校北偏東25°方向,C村位于學校北偏西65°方向,在B村和C村間的公路OE(射線)平分∠BOC.
(1)求∠AOE的度數(shù);
(2)公路OE上的車站D相對于學校O的方位是什么?(以正北、正南方向為基準)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com