【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗從化,某中學(xué)七年級一班同學(xué)都積極參加了植樹活動,今年四月份該班同學(xué)的植樹情況部分如圖所示,且植樹2株的人數(shù)占32%.
(1)求該班的總?cè)藬?shù)、植樹株數(shù)的眾數(shù),并把條形統(tǒng)計圖補(bǔ)充完整;
(2)若將該班同學(xué)的植樹人數(shù)所占比例繪制成扇形統(tǒng)計圖時,求“植樹3株”對應(yīng)扇形的圓心角的度數(shù);
(3)求從該班參加植樹的學(xué)生中任意抽取一名,其植樹株數(shù)超過該班植樹株數(shù)的平均數(shù)的概率.
【答案】(1)該班的總?cè)藬?shù)50人;植樹株數(shù)的眾數(shù)是2;補(bǔ)圖見解析;(2)100.8度;(3)植樹株數(shù)超過該班植樹株數(shù)平均數(shù)的概率是0.5.
【解析】分析:(1)植2株的有16人,所占百分比為32%,則可求出其總?cè)藬?shù),根據(jù)計算結(jié)果結(jié)合圖表找出眾數(shù);結(jié)合(1)的數(shù)據(jù)將條形統(tǒng)計圖補(bǔ)充完整;
(2)先根據(jù)“植樹3株”的人數(shù)為50-9-16-7-4=14(人),且所占總?cè)藬?shù)比例:14÷50=28%,即可得到“植樹3株”對應(yīng)扇形的圓心角的度數(shù);(3)根據(jù)題意,求得其平均數(shù)為2.62,超過平均數(shù)的為25人,根據(jù)概率公式進(jìn)行計算即可.
本題解析:
(1)該班的總?cè)藬?shù):16÷32%=50(人);
因為植3株的人數(shù)為50﹣9﹣16﹣7﹣4=14,數(shù)據(jù)2出現(xiàn)了16次,出現(xiàn)次數(shù)最多,
所以植樹株數(shù)的眾數(shù)是2;
條形統(tǒng)計圖補(bǔ)充如圖所示.
(2)因為植3株的人數(shù)為50﹣9﹣16﹣7﹣4=14(人),且所占總?cè)藬?shù)比例:14÷50=28%,
∴“植樹3株”對應(yīng)扇形的圓心角的度數(shù)為:28%×360=100.8(度);
(3)∵該班植樹株數(shù)的平均數(shù)=(9×1+16×2+14×3+7×4+4×5)÷50=2.62,
植樹株數(shù)超過該班植樹株數(shù)平均數(shù)的人數(shù)有:14+7+4=25(人),
∴概率==0.5.
答:植樹株數(shù)超過該班植樹株數(shù)平均數(shù)的概率是0.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騰飛中學(xué)在教學(xué)樓前新建了一座“騰飛”雕塑(如圖①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為,底部B點的俯角為,小華在五樓找到一點D,利用三角板測得A點的俯角為(如圖②).若已知CD為10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC<BC,點D在AC的延長線上,點E在BC邊上,且BE=AD,
(1) 如圖1,連接AE,DE,當(dāng)∠AEB=110°時,求∠DAE的度數(shù);
(2) 在圖2中,點D是AC延長線上的一個動點,點E在BC邊上(不與點C重合),且BE=AD,連接AE,DE,將線段AE繞點E順時針旋轉(zhuǎn)90°得到線段EF,連接BF,DE.
①依題意補(bǔ)全圖形;
②求證:BF=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎車從郵局出發(fā),先向西騎行 2 km 到達(dá) A 村,繼續(xù)向西騎行 3 km 到達(dá) B 村, 然后向東騎行 9 km 到達(dá) C 村,最后回到郵局.
(1)以郵局為原點,以向東方向為正方向,用 1 cm 表示 1 km 畫數(shù)軸,并在該數(shù)軸上表示 A,B,C 三個村莊的位置;
(2)C 村離 A 村有多遠(yuǎn)?
(3)郵遞員一共騎行了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )
A.菱形
B.對角線相互垂直的四邊形
C.正方形
D.對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( 。
A. 圖象必經(jīng)過點(﹣2,1) B. 圖象經(jīng)過第一、二、三象限
C. 當(dāng)x>時,y<0 D. y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象為直線l1,經(jīng)過A(0,4)和D(4,0)兩點,一次函數(shù)y=x+1的圖象為直線l2,與x軸交于點C,兩直線l1,l2相交于點B.
(1)求k,b的值;
(2)求點B的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)機(jī)租賃公司共有50臺收割機(jī),其中甲型20臺、乙型30臺,現(xiàn)將這50臺聯(lián)合收割機(jī)派往A,B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū),兩地區(qū)與該農(nóng)機(jī)公司商定的每天租賃價格如下表:
(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機(jī),租賃公司這50臺聯(lián)合收割機(jī)天獲得的租金為y元,求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量的取值范圍:
(2)若使農(nóng)機(jī)租賃公司這50臺收割機(jī)一天所獲租金不低于79600元,為農(nóng)機(jī)租賃公司擬出一個分派方案,使該公司50臺收割機(jī)每天獲得租金最高,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com