【題目】在平面直角坐標系中,直線l過點M(3,0),且平行于y軸.

(1)如果△ABC三個頂點的坐標分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關于y軸的對稱圖形是△A1B1C1,△A1B1C1關于直線l的對稱圖形是△A2B2C2,寫出△A2B2C2的三個頂點的坐標;

(2)如果點P的坐標是(﹣a,0),其中a>0,點P關于y軸的對稱點是P1,點P1關于直線l的對稱點是P2,求PP2的長.

【答案】(1)A2(4,0),B2(5,0),C2(5,2)

(2)6.

【解析】試題分析:(1)根據關于y軸對稱點的坐標特點是橫坐標互為相反數(shù),縱坐標相同可以得到△A1B1C1各點坐標,又關于直線l的對稱圖形點的坐標特點是縱坐標相同,橫坐標之和等于3的二倍,由此求出△A2B2C1的三個頂點的坐標;

2PP1關于y軸對稱,利用關于y軸對稱點的特點:縱坐標不變,橫坐標變?yōu)橄喾磾?shù),求出P1的坐標,再由直線l的方程為直線x=3,利用對稱的性質求出P2的坐標,即可PP2的長.

試題解析:(1△A2B2C2的三個頂點的坐標分別是A24,0),B25,0),C25,2);

2)如圖1,當0a≤3時,∵PP1關于y軸對稱,P-a,0),

∴P1a,0),

∵P1P2關于l:直線x=3對稱,

P2x,0),可得:=3,即x=6-a,

∴P26-a0),

PP2=6-a--a=6-a+a=6

如圖2,當a3時,

∵PP1關于y軸對稱,P-a0),

∴P1a,0),

∵P1P2關于l:直線x=3對稱,

P2x,0),可得:=3,即x=6-a,

∴P26-a0),

PP2=6-a--a=6-a+a=6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩根長桿隔河相對,一桿高3 m,另一桿高2 m,兩桿相距5 m.兩根長桿都與地面垂直,現(xiàn)兩桿頂部各有一只魚鷹,它們同時看到兩桿之間的河面上E處浮出一條小魚,于是同時以同樣的速度飛下來奪魚,結果兩只魚鷹同時叼住小魚.求兩桿底部距小魚的距離各是多少米.(假設小魚在此過程中保持不動)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經過點ABD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3,D、ED、AE三點所在直線m上的兩動點(D、AE三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點A,B,與函數(shù)y=x的圖象交于點M,點M的橫坐標為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數(shù)和y=x的圖象于點C,D.

(1)求點A的坐標;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當x=m和x=n(m≠n)時,二次函數(shù)y=x2﹣2x+3的函數(shù)值相等,當x=m+n時,函數(shù)y=x2﹣2x+3的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長,墻DE長為12米,現(xiàn)用20米長的籬笆圍成一個矩形花園ABCD,點C在墻DF上,點A在墻DE上,(籬笆只圍AB,BC兩邊).

(1)如何才能圍成矩形花園的面積為75m2?
(2)能夠圍成面積為101m2的矩形花園嗎?如能說明圍法,如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的兩點OA、OC分別在x軸、y軸的正半軸上,點G為矩形對角線的交點,經過點G的雙曲線y= 在第一象限的圖象與BC相交于點M,交AB于N,若已知SMBN=9,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在△ABC外部,點D在邊BC上,DE交AC于點F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三條公路兩兩相交,交點分別為A、B、C,現(xiàn)計劃修一個油庫,要求到三條公路的距離相等,可供選擇的地址有(

A. 一處 B. 二處 C. 三處 D. 四處

查看答案和解析>>

同步練習冊答案