【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù) (k≠0)在第一象限內(nèi)的圖像經(jīng)過(guò)點(diǎn)D、E,且tan∠BOA= .
(1)求邊AB的長(zhǎng);
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖像與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求線段OG的長(zhǎng).
【答案】
(1)
解:∵點(diǎn)E(4,n)在邊AB上,
∴OA=4,
在Rt△AOB中,∵tan∠BOA= ,
∴AB=OA×tan∠BOA=4× =2
(2)
解:根據(jù)(1),可得點(diǎn)B的坐標(biāo)為(4,2),
∵點(diǎn)D為OB的中點(diǎn),
∴點(diǎn)D(2,1)
∴ =1,
解得k=2,
∴反比例函數(shù)解析式為y= ,
又∵點(diǎn)E(4,n)在反比例函數(shù)圖像上,
∴ =n,
解得n=
(3)
解:如圖,
設(shè)點(diǎn)F(a,2),
∵反比例函數(shù)的圖像與矩形的邊BC交于點(diǎn)F,
∴ =2,
解得a=1,
∴CF=1,
連接FG,設(shè)OG=t,則OG=FG=t,CG=2﹣t,
在Rt△CGF中,GF2=CF2+CG2,
即t2=(2﹣t)2+12,
解得t= ,
∴OG=t= .
【解析】(1)根據(jù)點(diǎn)E的縱坐標(biāo)判斷出OA=4,再根據(jù)tan∠BOA= 即可求出AB的長(zhǎng)度;(2)根據(jù)(1)求出點(diǎn)B的坐標(biāo),再根據(jù)點(diǎn)D是OB的中點(diǎn)求出點(diǎn)D的坐標(biāo),然后利用待定系數(shù)法求函數(shù)解析式求出反比例函數(shù)解析式,再把點(diǎn)E的坐標(biāo)代入進(jìn)行計(jì)算即可求出n的值;(3)先利用反比例函數(shù)解析式求出點(diǎn)F的坐標(biāo),從而得到CF的長(zhǎng)度,連接FG,根據(jù)折疊的性質(zhì)可得FG=OG,然后用OG表示出CG的長(zhǎng)度,再利用勾股定理列式計(jì)算即可求出OG的長(zhǎng)度.
【考點(diǎn)精析】本題主要考查了反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn);性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組10名學(xué)生在一次數(shù)學(xué)測(cè)試中的成績(jī)?nèi)绫恚M分150分)
分?jǐn)?shù)(單位:分) | 105 | 130 | 140 | 150 |
人數(shù)(單位:人) | 2 | 4 | 3 | 1 |
下列說(shuō)法中,不正確的是( )
A.這組數(shù)據(jù)的眾數(shù)是130
B.這組數(shù)據(jù)的中位數(shù)是130
C.這組數(shù)據(jù)的平均數(shù)是130
D.這組數(shù)據(jù)的方差是112.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設(shè)筷子露在杯子外面的長(zhǎng)度hcm,則h的取值范圍是( )
A.h≤17cm
B.h≥8cm
C.15cm≤h≤16cm
D.7cm≤h≤16cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩條筆直的公路AB,CD相交于點(diǎn)O,∠AOC為30°,指揮中心M設(shè)在OA路段上,與O地的距離為22千米.一次行動(dòng)中,王警官帶隊(duì)從O地出發(fā),沿OC方向行進(jìn),王警官與指揮中心均配有對(duì)講機(jī),兩部對(duì)講機(jī)只能在10千米之內(nèi)進(jìn)行通話,通過(guò)計(jì)算判斷王警官在行進(jìn)過(guò)程中能否與指揮中心用對(duì)講機(jī)通話.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐廳共有10名員工,所有員工工資的情況如下表:
請(qǐng)解答下列問(wèn)題:
(1)餐廳所有員工的平均工資是多少?
(2)所有員工工資的中位數(shù)是多少?
(3)用平均數(shù)還是中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng)?
(4)去掉經(jīng)理和廚師甲的工資后,其他員工的平均工資是多少?它是否能反映餐廳員工工資的一般水平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于點(diǎn),.點(diǎn)的坐標(biāo)為(,0),點(diǎn) 的坐標(biāo)為(,0).
(1)求的值;
(2)若點(diǎn)(,)是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)過(guò)程中,試寫出的面積與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)探究:當(dāng)運(yùn)動(dòng)到什么位置時(shí),的面積為,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 不帶根號(hào)的數(shù)不是無(wú)理數(shù)
B. 的立方根是±2
C. 絕對(duì)值等于的實(shí)數(shù)是
D. 每個(gè)實(shí)數(shù)都對(duì)應(yīng)數(shù)軸上一個(gè)點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com