如圖,在直角坐標系中,四邊形OABC為正方形,頂點A,C在坐標軸上,以邊AB為弦的⊙M與x軸相切,若點A的坐標為(0,8),則圓心M的坐標為( )

A.(4,5)
B.(-5,4)
C.(-4,6)
D.(-4,5)
【答案】分析:過點M作MD⊥AB于D,連接AM,設⊙M的半徑為R,因為四邊形OABC為正方形,頂點A,C在坐標軸上,以邊AB為弦的⊙M與x軸相切,若點A的坐標為(0,8),所以DA=4,AB=8,DM=8-R,AM=R,又因△ADM是直角三角形,利用勾股定理即可得到關于R的方程,解之即可.
解答:解:過點M作MD⊥AB于D,連接AM,設⊙M的半徑為R,
∵四邊形OABC為正方形,頂點A,C在坐標軸上,以邊AB為弦的⊙M與x軸相切,點A的坐標為(0,8),
∴DA=4,AB=8,DM=8-R,AM=R,
又∵△ADM是直角三角形,
根據(jù)勾股定理可得AM2=DM2+AD2,
∴R2=(8-R)2+42,
解得R=5,
∴M(-4,5).
故選D.
點評:本題需仔細分析題意及圖形,利用勾股定理來解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案