【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個(gè)根為﹣,其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

由二次函數(shù)圖象的開口方向、對(duì)稱軸及與y軸的交點(diǎn)可分別判斷出a、b、c的符號(hào),從而可判斷①;由對(duì)稱軸=2可知a=,由圖象可知當(dāng)x=1時(shí),y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.

解:∵圖象開口向下,∴a<0,

∵對(duì)稱軸為直線x=2,>0,b>0,

∵與y軸的交點(diǎn)在x軸的下方,∴c<0,

∴abc>0,故①錯(cuò)誤.

∵對(duì)稱軸為直線x=2,=2,a=

∵由圖象可知當(dāng)x=1時(shí),y>0,

∴a+b+c>0,4a+4b+4c>0,4()+4b+4c>0,

3b+4c>0,故②錯(cuò)誤.

∵由圖象可知OA<1,且OA=OC,

∴OC<1,即-c<1,

∴c>-1,故③正確.

∵假設(shè)方程的一個(gè)根為x=-,把x=-代入方程可得+c=0,

整理可得ac-b+1=0,

兩邊同時(shí)乘c可得ac2-bc+c=0,

∴方程有一個(gè)根為x=-c,

由③可知-c=OA,而當(dāng)x=OA是方程的根,

∴x=-c是方程的根,即假設(shè)成立,故④正確.

綜上可知正確的結(jié)論有三個(gè):③④.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若BD為等邊ABC的一條中線,延長(zhǎng)BC至點(diǎn)E,使CECD1,連接DE,則DE的長(zhǎng)為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=k 為常數(shù), k≠0)的圖象交于 A(1,a)、Bb,1)兩點(diǎn).

(1)求點(diǎn) A、B 的坐標(biāo)及反比例函數(shù)的表達(dá)式;

(2) x 軸上找一點(diǎn)使 PA+PB 的值最小,求滿足條件的點(diǎn) P 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=x22mx+m2+m的頂點(diǎn)為A,與y軸交于點(diǎn)B.當(dāng)拋物線不經(jīng)過坐標(biāo)原點(diǎn)時(shí),分別作點(diǎn)AB關(guān)于原點(diǎn)的對(duì)稱點(diǎn)C、D,連結(jié)AB、BC、CD、DA

1)分別用含有m的代數(shù)式表示點(diǎn)AB的坐標(biāo).

2)判斷點(diǎn)B能否落在y軸負(fù)半軸上,并說明理由.

3)連結(jié)AC,設(shè)l=AC+BD,求lm之間的函數(shù)關(guān)系式.

4)過點(diǎn)Ay軸的垂線,交y軸于點(diǎn)P,以AP為邊作正方形APMN,MNAP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒假即將到來,外出旅游的人數(shù)逐漸增多,對(duì)旅行包的需求也將增多,某店準(zhǔn)備到生產(chǎn)廠家購買旅行包,該廠有甲、乙兩種新型旅行包.若購進(jìn)10個(gè)甲種旅行包和20個(gè)乙種旅行包共需5600元,若購進(jìn)20個(gè)甲種旅行包和10個(gè)乙種旅行包共需5200元.

1)甲、乙兩種旅行包的進(jìn)價(jià)分別是多少元?

2)若該店恰好用了7000元購買旅行包;

①設(shè)該店購買了m個(gè)甲種旅行包,求該店購買乙種旅行包的個(gè)數(shù);

②若該店將甲種旅行包的售價(jià)定為298元,乙種旅行包的售價(jià)定為325元,則當(dāng)該店怎么樣進(jìn)貨,才能獲得最大利潤(rùn),并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖和圖,請(qǐng)根據(jù)圖中提供的信息,回答下列問題:

(1)本次隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為______,圖中的m的值為______

(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)若該校九年級(jí)共有學(xué)生300人,如果體育成績(jī)達(dá)28分以上(含28分)為優(yōu)秀,請(qǐng)估計(jì)該校九年級(jí)學(xué)生體育成績(jī)達(dá)到優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,于點(diǎn),交于點(diǎn),于點(diǎn),,,,給出下列結(jié)論:①;②;③;④;⑤.其中正確的結(jié)論有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣九年級(jí)一?荚嚱Y(jié)束后,張老師依據(jù)一班考試成績(jī)(單位:分)繪制了頻數(shù)分布直方圖(如圖所示)

根據(jù)頻數(shù)分布直方圖,解答下列問題.

(1)填空:該班有_____人,根據(jù)直方圖估算該班一?荚嚁(shù)學(xué)平均成績(jī)是_____分;

(2)請(qǐng)?jiān)谒o半徑為2的圓中,畫出成績(jī)?cè)?/span>70≤x<80的人數(shù)對(duì)應(yīng)的扇形,并求出該扇形的面積;

(3)從成績(jī)?cè)?/span>20≤x<3090≤x<100的學(xué)生中任選2人,明明的成績(jī)是91分,聰聰?shù)某煽?jī)是28分,用樹狀圖或列表法列出所有可能結(jié)果,并求明明、聰聰同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,EO上的兩點(diǎn),若AC平分∠EAB,CDAE于點(diǎn)D

(1)求證:DC是⊙O切線;

(2)若AO=6,DC=3,求DE的長(zhǎng);

(3)過點(diǎn)CCFABF,如圖2,若ADOA=1.5,AC=3,求圖中陰影部分面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案