如圖,AB為⊙O的弦,若OA⊥OD且CD=BD.求證:BD是⊙O的切線.
證明:連接OB,
∵OA=OB,CD=DB,
∴∠OAC=∠OBC,∠DCB=∠DBC.
∵∠OAC+∠ACO=90°,∠ACO=∠DCB,
∴∠OBC+∠DBC=90°.
∴OB⊥BD.
即BD是⊙O的切線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,A、B是切點(diǎn),點(diǎn)C是劣弧AB上的一個(gè)動(dòng)點(diǎn),若∠P=40°,則∠ACB的度數(shù)是( 。
A.80°B.110°C.120°D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠C=90°,O是AB邊上一點(diǎn),⊙O與AC、BC都相切,若BC=3,AC=4,則⊙O的半徑為( 。
A.1B.2C.
5
2
D.
12
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙B的半徑r=1,PA、PO是⊙B的切線,A、O是切點(diǎn).過點(diǎn)A作弦ACPO,連接CO、AO(如圖1).
(1)問△PAO與△OAC有什么關(guān)系?證明你的結(jié)論;
(2)把整個(gè)圖形放在直角坐標(biāo)系中(如圖2),使OP與x軸重合,B點(diǎn)在y軸上.
設(shè)P(t,0),P點(diǎn)在x軸的正半軸上運(yùn)動(dòng)時(shí),四邊形PACO的形狀隨之變化,當(dāng)這圖形滿足什么條件時(shí),四邊形PACO是菱形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)C在⊙O上,延長直徑AB到點(diǎn)P,連接PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)若AC=PC,且PB=3,M是⊙O下半圓弧上一動(dòng)點(diǎn),當(dāng)M點(diǎn)運(yùn)動(dòng)到使△ABM的面積最大時(shí),CM交AB于點(diǎn)N,求MN•MC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為3cm,AE=5cm,求∠ADE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,C是⊙O上的一點(diǎn),D在AB的延長線上,∠DCB=∠A.
(1)求證:CD是⊙O的切線;
(2)若BD=2OB,CD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N.
(1)求證:BA•BM=BC•BN;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=3時(shí),求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BOC=100°,MN是過B點(diǎn)而垂直于OB的直線,則∠ABM=______度,∠CBN=______度.

查看答案和解析>>

同步練習(xí)冊答案