【題目】已知拋物線C1:y=﹣x2+2mx+1(m為常數(shù),且m≠0)的頂點為A,與y軸交于點C;拋物線C2與拋物線C1關于y軸對稱,其頂點為B.若點P是拋物線C1上的點,使得以A、B、C、P為頂點的四邊形為菱形,則m為( )
A.
B.
C.
D.
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.
(1)甲、乙兩種款型的T恤衫各購進多少件?
(2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y= x2+mx+n(n≠0)與直線y=x交于A、B兩點,與y軸交于點C,OA=OB,BC∥x軸.
(1)求拋物線的解析式;
(2)設D、E是線段AB上異于A、B的兩個動點(點E在點D的上方),DE= ,過D、E兩點分別作y軸的平行線,交拋物線于F、G,若設D點的橫坐標為x,四邊形DEGF的面積為y,求x與y之間的關系式,寫出自變量x的取值范圍,并回答x為何值時,y有最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中,BM是ABC內(nèi)部的一條射線,且,點A關于BM的對稱點為D,連接AD,BD,CD,其中AD、CD的延長線分別交射線BM于點E,P.
(1)依題意補全圖形;
(2)若ABM ,求BDC 的大。ㄓ煤的式子表示);
(3)用等式表示線段PB,PC與PE之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副三角板(直角三角板和直角三角板,其中,,)的直角頂點重疊在一起.
(1)如圖1,當平分時,是多少度?
(2)如圖2,當不平分時,是多少度?
(3)當的余角的4倍等于時,求此時的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小慧從A處出發(fā)沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需要將方向調(diào)整到與出發(fā)時一致,則方向的調(diào)整應為( )
A.左轉80°B.右轉80°C.左轉100°D.右轉100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點,M為AB中點、N為DE中點,連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1 =∠2,∠BAC = 70°。將求∠AGD的過程填寫完整。因為EF∥AD,所以 ∠2 = 。又因為 ∠1 = ∠2,所以 ∠1 = ∠3。 所以AB∥ 。所以∠BAC + = 180°。又因為∠BAC = 70°,所以∠AGD = 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com