【題目】(觀察)方程的解是的解是;
的解是的解是
(發(fā)現(xiàn))根據(jù)你的閱讀回答問題:
(1)的解為_______;
(2)關(guān)于的方程的解為_______(用含的代數(shù)式表示),并利用“方程的解的概念”驗證.
(類比)
(3)關(guān)于的方程的解為_________(用含的代數(shù)式表示).
【答案】(1)x=3;(2)x=8-a(a≠4);(3)x=2b-a(a≠b)
【解析】
(1)(2)觀察已知可以發(fā)現(xiàn):方程的解與第二個分式的分子之和為8,由此可以得出結(jié)論;
(3)去分母解方程即可得出結(jié)論.
(1)由已知可得:方程的解與第二個分式的分子之和為8,∴x=8-5=3.
經(jīng)檢驗,x=3是原方程的解;
(2)由已知可得:方程的解與第二個分式的分子之和為8,x=8-a(a≠4),經(jīng)檢驗,x=8-a(a≠4)是原方程的解;
(3)去分母得:x-a=2(x-b),去括號得:x-a=2x-2b,解得:x=2b-a(a≠b),經(jīng)檢驗,x=2b-a(a≠b)是原方程的解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項式3x6﹣2x2﹣4的常數(shù)項為a,次數(shù)為b.
(1)設(shè)a與b分別對應(yīng)數(shù)軸上的點A、點B,請直接寫出a= ,b= ,并在數(shù)軸上確定點A、點B的位置;
(2)在(1)的條件下,點P以每秒2個單位長度的速度從點A向B運(yùn)動,運(yùn)動時間為t秒:
①若PA﹣PB=6,求t的值,并寫出此時點P所表示的數(shù);
②若點P從點A出發(fā),到達(dá)點B后再以相同的速度返回點A,在返回過程中,求當(dāng)OP=3時,t為何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列各數(shù)填入相應(yīng)的集合內(nèi):
3.1415926,﹣2.1,|﹣|, 0, , -2.626626662…,, .
正數(shù)集合:{ …}
負(fù)數(shù)集合:{ …}
有理數(shù)集合:{ …}
無理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的個數(shù)為( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿著A→B→C→D路徑勻速運(yùn)動到點D,設(shè)△PAD的面積為y,P點的運(yùn)動時間為x,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點D在邊BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圓.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BD是⊙O的直徑時(如圖2),求∠CAD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com