【題目】如圖,點在反比例函數(shù)的圖象上,連接,作,且,線段軸于點,若的面積為,則的值為(

A.B.C.D.

【答案】B

【解析】

AAM⊥x軸于M,作CN⊥AM,交MA延長線于N,根據(jù),△COB的面積,易求得△AOC的面積為,進而求得SAOM+SANC=SAOC=,通過證得△OAM∽△ACN,得出,即可求得SOBM==6,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,即可確定k的值.

解:過AAM⊥x軸于M,作CN⊥AM,交MA延長線于N,

,△COB的面積

∴SAOC=3SCOB=

四邊形OMNC是矩形

∴SAOM+SANC=SAOC=

,且AO=AB,

∴∠CAN+∠OAM=90°,∠AOM+∠OAM=90°,

∴∠AOM=∠CAN,

∵∠AMO=∠CNA=90°,

∴△OAM∽△ACN,

∵BC∶AC =13,

∴OA∶AC =43,

∴SOAM==6

B在反比例函數(shù)的圖象上,

∴SOBM=|k|,解得k=±12

圖象在第二象限,

.∴k=-12

故答案為B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標為(0,3),點Bx軸上

1)在坐標系中求作一點M,使得點M到點A,點B和原點O這三點的距離相等,在圖中保留作圖痕跡,不寫作法;

2)若sinOAB,求點M的坐標;

3)在(2)的條件下,直接寫出以點O、M、B為其中三個頂點的平行四邊形的第四個頂點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某中學九年級數(shù)學活動小組選定測量學校前面小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i1,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74cos48°≈0.67,tan48°≈1.11,1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2-4ax+c(a0)y軸交于點A,將點A向右平移2個單位長度,得到點B.直線x軸,y軸分別交于點CD.

1)求拋物線的對稱軸.

2)若點A與點D關(guān)于x軸對稱.

①求點B的坐標.

②若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片中,,將沿折疊,使點落在點處,于點,則的長等于(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學實踐活動中,觀測小組對某品牌節(jié)能飲水機進行了觀察和記錄,當觀察到第分鐘時,水溫為,記錄的相關(guān)數(shù)據(jù)如下表所示:

第一次加熱、降溫過程

t(分鐘)

0

10

20

30

40

50

60

70

80

90

100

y

20

40

60

80

100

80

66.7

57.1

50

44.4

40

(飲水機功能說明:水溫加熱到時飲水機停止加熱,水溫開始下降,當降到時飲水機又自動開始加熱)

請根據(jù)上述信息解決下列問題:

1)根據(jù)表中數(shù)據(jù)在如給出的坐標系中,描出相應的點;

2)選擇適當?shù)暮瘮?shù),分別求出第一次加熱過程和第一次降溫過程關(guān)于的函數(shù)關(guān)系式,并寫出相應自變量的取值范圍;

3)已知沏茶的最佳水溫是,若18:00開啟飲水機(初始水溫)到當晚20:10,沏茶的最佳水溫時間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了多少名學生?在扇形統(tǒng)計圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學生,請估計該校最喜歡用 “微信”進行溝通的學生大約有多少名?

(4)某天甲、乙兩名同學都想從微信"、""電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級學生體育測試情況,以七年級(1)班學生的體育測試成績?yōu)闃颖,?/span>A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下的統(tǒng)計圖,請你結(jié)合圖中所給的信息解答下列問題:

(說明:A級:90~100分;B級:75~89分;C級:60~74分;D級:60分以下)

1)請把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是

3)若該校七年級有600名學生,請用樣本估計體育測試中A級學生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,5輛大貨車與3輛小貨車一次可以運貨21噸,3輛大貨車與2輛小貨車一次可以運貨13噸.

1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?

2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于23噸,則其中大貨車至少多少輛?

3)日前有20噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為400元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金

查看答案和解析>>

同步練習冊答案