【題目】方程(組)與不等式(組)是代數(shù)的重要組成部分,也是解決數(shù)學(xué)問題的重要工具,請利用所學(xué),解決以下 3 個問題:

(1)當(dāng) k 為何整數(shù)時,關(guān)于 x , y 的方程組 的解滿足 x y x y 4 ;

(2)已知正整數(shù) a ,使得關(guān)于 x , y 的方程組的解是整數(shù),解關(guān)于 x 的不等式;

3)已知 x ,y ,z 3 個非負(fù)實數(shù),且滿足3x 2 y z 5 ,x y z 2 ,記 S 2x y z對于符合題意的任意實數(shù) S ,不等式 2m S 3 始終成立,試確定 m 的取值范圍.

【答案】(1) -6<k<-4;(2) x≥1;(3) m≤

【解析】

1)將k看做已知數(shù)求出方程組的解表示出xy,根據(jù)題意列出不等式組,求出不等式組的解集即可;
2)將a看做已知數(shù)求出方程組的解表示出xy,代入不等式,解不等式即可;
3)解方程組得到x,y,z,再解不等式組,得到S,代入不等式解答即可.

解:(1)解方程組
∵x>y且x-y<4,
,
解答:-6<k<-4;
(2)解方程組得,
∵a為正整數(shù),x、y為整數(shù),
∴a=2,
把a=2代入
解得:x≥1;
(3)解方程組

得,,
∵x,y,z為3個非負(fù)實數(shù),
,解得:2≤S≤3,
∴S最小=2,S的最大值3,
∵2m-S≤3始終成立,
∴2m-3≤2,
解得:m≤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24mD=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求BC的距離.

2)通過計算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過C.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線AB直接到達.已知BC=8km,∠A=45°,∠B=53°.

(1)求點C到直線AB的距離;

(2)求現(xiàn)在從A地到B地可比原來少走多少路程?(結(jié)果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若有理數(shù)a,b滿足等式,則稱a,b是“雉水有理數(shù)對”,記作如:數(shù)對都是“雉水有理數(shù)對”.

數(shù)對______填“是”或“不是”“雉水有理數(shù)對”;

是“雉水有理數(shù)對”,求m的值;

請寫出一個符合條件的“錐水有理數(shù)對”______注意:不能與題目中已有的“雉水有理數(shù)對”重復(fù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點EAB上一動點(不與A、B重合).將EBC沿CE翻折至EFC,延長EF交邊AD于點G

1)連結(jié)AF,若 AFCE.證明:點EAB的中點;

2)證明:GF=GD;

3)若AD=10,設(shè)EB=xGD=y,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)對于任意正實數(shù)a、b

()20,

a2+b0

a+b2,(只有當(dāng)ab時,a+b等于2)

(1)(獲得結(jié)論)在a+b2(ab均為正實數(shù))中,若ab為定值p,

a+b2,只有當(dāng)ab時,a+b有最小值2

根據(jù)上述內(nèi)容,回答下列問題:若m0,只有當(dāng)m   時,m+有最小值   

(2)(探索應(yīng)用)已知點Q(3,﹣4)是雙曲線y上一點,過QQAx軸于點A,作QBy軸于點B.點P為雙曲線y(x0)上任意一點,連接PA,PB,求四邊形AQBP的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B在數(shù)軸上表示的數(shù)分別為﹣128,兩只螞蟻M、N分別從AB兩點同時勻速出發(fā),同向而行

時間/

0

1

5

A點位置

12

9

   

B點位置

8

   

18

1)請?zhí)顚懕砀瘢?/span>

2)若兩只螞蟻在數(shù)軸上點P相遇,求點P在數(shù)軸上表示的數(shù);

3)若運動t秒鐘時,兩只螞蟻的距離為10,求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩點在數(shù)軸上所表示的數(shù)分別為且滿足.

(1) ;

(2)若點點出發(fā),以每秒1個單位長度的速度向運動,同時點QM點出發(fā),以每秒1個單位長度的速度向運動,經(jīng)過多長時間后兩點相距7個單位長度?

(3)為線段上的兩點,且,點從點出發(fā),以每秒2個單位長度的速度向運動,點點出發(fā),以每秒4個單位長度的速度向運動,點RB點出發(fā),以每秒3個單位長度的速度向運動,P,Q,R同時出發(fā),是否存在常數(shù),使得的值與它們的運動時間無關(guān),為定值。若存在,請求出和這個定值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案