【題目】如圖,將矩形沿對(duì)角線折疊,點(diǎn)落到點(diǎn)處,交于點(diǎn)
(1)求證:
(2)若,求的值
【答案】(1)見解析 (2)
【解析】
(1)由矩形的性質(zhì)得到AB∥CD,∠ABD=∠BDC,求得∠BDC=∠DBF,于是得到結(jié)論;
(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠A=∠C=90°,根據(jù)折疊的性質(zhì)得到∠A′=∠A=90°,A′D=AD,根據(jù)全等三角形的性質(zhì)得到AF=CF,設(shè)AF=CF=x,A′D=BC=2x,根據(jù)勾股定理得到,于是得到結(jié)論.
四邊形為矩形,
又
∵四邊形ABCD是矩形,
∴AD=BC,∠A=∠C=90°,
∵將矩形ABCD沿對(duì)角線BD折疊,
∴∠A′=∠A=90°,A′D=AD,
∴A′D=BC,∠A′=∠C=90°,
∵∠A′FD=∠BFC,
∴△DA′F≌△BCF(AAS),
設(shè)
由勾股定理求得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?
(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程:
(1)x2+2x-8=0 (2)x2+12x-15=0
(3)x2-4x=16 (4)x2=x+56
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時(shí)間.設(shè)他從山腳出發(fā)后所用時(shí)間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示.下列四種說法:①小明中途休息用了20分鐘;②小明休息前爬山的平均速度為每分鐘70米;③小明在上述過程中所走的路程為6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正確的是________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn)BD是對(duì)角線,AG∥DB,交CB的延長(zhǎng)線于G,連接GF,若AD⊥BD.下列結(jié)論:①DE∥BF;②四邊形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正確的是( )
A. ①②③④ B. ①② C. ①③ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,點(diǎn)F在AC延長(zhǎng)線上,,DE是△ABC中位線,如果∠1=30°,DE=2,則四邊形AFED的周長(zhǎng)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A′B′C′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是直線上的格點(diǎn)C′.
(1)畫出△A′B′C′.
(2)△ABC兩次共平移了___個(gè)單位長(zhǎng)度。
(3)試在直線上畫出點(diǎn)P,使得由點(diǎn)A′、B′、C′、P四點(diǎn)圍成的四邊形的面積為9.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com