【題目】如圖,AOB是一條直線(xiàn),∠AOC=60°,OD,OE分別是∠AOC和∠BOC的平分線(xiàn),則圖中互補(bǔ)的角有(

A.5對(duì)
B.6對(duì)
C.7對(duì)
D.8對(duì)

【答案】D
【解析】解:∠BOC=180°﹣∠AOC=180°﹣60°=120°,
∵OD,OE分別是∠AOC和∠BOC的平分線(xiàn),
∴∠AOD=∠COD=30°,∠COE=∠BOE=60°,
∴∠AOE=∠BOC=120°,∠DOE=90°,∠DOB=150°,
則∠AOD+∠DOB=180°,∠COD+∠DOB=180°,∠AOC+∠BOC=180°,∠COE+∠BOC=180°,∠BOE+∠BOC=180°,∠AOE+∠BOE=180°,∠AOE+∠AOC=180°,∠AOE+∠COE=180°.
總之有8對(duì)互補(bǔ)的角.
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解余角和補(bǔ)角的特征(互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( )

A. ﹣1﹣1=0 B. ﹣1+1=0

C. 1﹣(﹣1)=0 D. (﹣1)+(﹣1)=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若已知x+y=3,xy=1,試求
(1)(x﹣y)2的值
(2)x3y+xy3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出;怎樣計(jì)算1×2+2×3+3×4+…+(n﹣1)×n呢?
材料學(xué)習(xí)
計(jì)算1+2+3…+n
因?yàn)?= (1×2﹣0×1);2= (2×3﹣1×2);3= (3×4﹣2×3)
…,n= [n(n+1)﹣(n﹣1)n]
所以1+2+3+…+n
= (1×2﹣0×1)+ (2×3﹣1×2)+ (3×4﹣2×3)+…+ [n(n+1)﹣(n﹣1)n]
= [1×2﹣0×1+2×3﹣1×2+3×4﹣2×3+…+n(n+1)﹣(n﹣1)n]= n(n+1)
(1)探究應(yīng)用
觀(guān)察規(guī)律:①1×2= (1×2×3﹣0×12);②2×3= (2×3×4﹣1×2×3);
③3×4= (3×4×5﹣2×3×4);…
猜想歸納:
根據(jù)(1)中觀(guān)察的規(guī)律直接寫(xiě)出:4×5=
(n﹣1)×n= []
問(wèn)題解決:
1×2+2×3+3×4+4×5…+(n﹣1)×n
= (1×2×3﹣0×1×2)+ (2×3×4﹣1×2×3)+ (3×4×5﹣2×3×4)+…+ []
=
(2)拓展延伸
根據(jù)上面的規(guī)律,請(qǐng)直接寫(xiě)出1×2×3+2×3×4+3×4×5+…+(n﹣2)(n﹣1)n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方形的周長(zhǎng)為10,它的長(zhǎng)是a,那么它的寬是( )

A. 10﹣a B. 10﹣2a C. 5﹣a D. 5﹣2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用四舍五入法取近似數(shù):π(精確到百分位)≈_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為進(jìn)行危房改造,政府最近將在某校搭建板房,從某廠(chǎng)調(diào)拔了用于搭建板房的板材5600m3和鋁材2210m3 , 計(jì)劃用這些材料在某校搭建甲、乙兩種規(guī)格的板房共100間.若搭建一間甲型 板房或一間乙型板房所需板材和鋁材的數(shù)量如表所示:

板房規(guī)格

板材數(shù)量(m3

鋁材數(shù)量(m3

甲型

40

30

乙型

60

20

請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出甲、乙兩種板房的搭建方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD中,∠A+∠C=270°,則∠B=______,∠C=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案