【題目】如圖,四邊形中,平分,的中點(diǎn),

1)求證:;

2)求證:;

3)若,求的值.

【答案】1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3

【解析】

1)由∠DAC=∠CAB,∠ADC=∠ACB90°,可得;(2)根據(jù)直角三角形斜邊上中線性質(zhì)得∠EAC=∠ECA,證∠DAC=∠ECA,可得;(3)證△AFD∽△CFE,根據(jù)相似三角形性質(zhì)可得:ADCEAFCF.

1)證明:∵AC平分∠DAB,

∴∠DAC=∠CAB,

∵∠ADC=∠ACB90°

∴△ACD∽△ABC,

2)證明:∵EAB的中點(diǎn),

CEABAE,

∴∠EAC=∠ECA,

∵∠DAC=∠CAB,

∴∠DAC=∠ECA,

CEAD;

3)解:∵CEAD,

∴△AFD∽△CFE

ADCEAFCF,

CEAB,

CE×63,

AD4,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】受疫情影響,很多學(xué)校都紛紛響應(yīng)了“停課不停學(xué)”的號(hào)召,開(kāi)展線上教學(xué)活動(dòng).為了解學(xué)生上網(wǎng)課使用的設(shè)備類(lèi)型,某校從“電腦、手機(jī)、電視、其它”四種類(lèi)型的設(shè)備對(duì)學(xué)生做了一次抽樣調(diào)查.調(diào)查結(jié)果顯示,每個(gè)學(xué)生只選擇了以上四種設(shè)備類(lèi)型中的一種,現(xiàn)將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該校共有1500名學(xué)生,估計(jì)全校用手機(jī)上網(wǎng)課的學(xué)生共有___________名;

3)在上網(wǎng)課時(shí),老師在A、B、CD四位同學(xué)中隨機(jī)抽取一名學(xué)生回答問(wèn)題,求兩次都抽取到同一名學(xué)生回答問(wèn)題的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:則下列說(shuō)法錯(cuò)誤的是( 。

x

-1

0

1

2

3

y

A. 二次函數(shù)圖像與x軸交點(diǎn)有兩個(gè)

B. x≥2時(shí)y隨x的增大而增大

C. 二次函數(shù)圖像與x軸交點(diǎn)橫坐標(biāo)一個(gè)在-1~0之間,另一個(gè)在2~3之間

D. 對(duì)稱(chēng)軸為直線x=1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了疫情防控需要,某防護(hù)用品廠計(jì)劃生產(chǎn)150000個(gè)口罩,但是在實(shí)際生產(chǎn)時(shí),……,求實(shí)際每天生產(chǎn)口罩的個(gè)數(shù),在這個(gè)題目中,若設(shè)實(shí)際每天生產(chǎn)口罩x個(gè),可得方程10,則題目中用“……”表示的條件應(yīng)是(  )

A.每天比原計(jì)劃多生產(chǎn)500個(gè),結(jié)果延期10天完成

B.每天比原計(jì)劃少生產(chǎn)500個(gè),結(jié)果提前10天完成

C.每天比原計(jì)劃少生產(chǎn)500個(gè),結(jié)果延期10天完成

D.每天比原計(jì)劃多生產(chǎn)500個(gè),結(jié)果提前10天完成

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)O0,0),A(-50),B2,1),拋物線ly=-(xh21h為常數(shù))與y軸的交點(diǎn)為C

1l經(jīng)過(guò)點(diǎn)B,求它的解析式,并寫(xiě)出此時(shí)l的對(duì)稱(chēng)軸及頂點(diǎn)坐標(biāo):

2)設(shè)點(diǎn)C的縱坐標(biāo)為yc,求yc的最大值,此時(shí)l上有兩點(diǎn)(x1,y1),(x2,y2),其中x1x2≥0,比較y1y1的大小;

3)當(dāng)線段OAl只分為兩部分,且這兩部分的比是14時(shí),求h的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1 ,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中AC、E在同一直線上.

1)求斜坡CD的高度DE;

2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊A1C1C2的周長(zhǎng)為1,作C1D1A1C2D1,在C1C2的延長(zhǎng)線上取點(diǎn)C3,使D1C3D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長(zhǎng)線上取點(diǎn)C4,使D2C4D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4且點(diǎn)A1,A2A3,都在直線C1C2同側(cè),如此下去,可得到A1C1C2A2C2C3,A3C3C4,,AnCnCn1,則AnCnCn1的周長(zhǎng)為_______(n≥1,且n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線ly=x,過(guò)點(diǎn)A11,0)作A1B1⊥x軸,與直線l交于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2,再作A2B2⊥x軸,交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3…按照這樣的作法進(jìn)行下去,則點(diǎn)A20的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+ca0)與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn)(點(diǎn)Cx軸正半軸上),△ABC為等腰直角三角形,且面積為4.現(xiàn)將拋物線沿BA方向平移,平移后的拋物線經(jīng)過(guò)點(diǎn)C時(shí),與x軸的另一交點(diǎn)為E,其頂點(diǎn)為F,對(duì)稱(chēng)軸與x軸的交點(diǎn)為H

1)求a、c的值;

2)連接OF,求△OEF的周長(zhǎng);

3)現(xiàn)將一足夠大的三角板的直角頂點(diǎn)Q放在射線HF上,一直角邊始終過(guò)點(diǎn)E,另一直角邊與y軸相交于點(diǎn)P,是否存在這樣的點(diǎn)Q,使得以點(diǎn)P、QE為頂點(diǎn)的三角形與△POE全等?若存在,請(qǐng)直接寫(xiě)出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案