如圖△ABC為等邊三角形,⊙O的周長與等邊三角形一邊長相等,⊙O在△ABC的邊上作無滑動(dòng)滾動(dòng),從P點(diǎn)出發(fā)沿順時(shí)針方向滾動(dòng),又回到P點(diǎn),共滾動(dòng)的圈數(shù)是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:根據(jù)直線與圓相切的性質(zhì)得到圓從一邊轉(zhuǎn)到另一邊時(shí),圓心要繞其三角形的頂點(diǎn)旋轉(zhuǎn)120°,則圓繞三個(gè)頂點(diǎn)共旋轉(zhuǎn)了360°,即它轉(zhuǎn)了一圈,再加上在三邊作無滑動(dòng)滾動(dòng)時(shí)要轉(zhuǎn)三圈,這樣得到它回到原出發(fā)位置點(diǎn)P時(shí)共轉(zhuǎn)了4圈.
解答:圓在AB、BC、CA三邊作無滑動(dòng)滾動(dòng)時(shí),
∵等邊三角形的邊長與和圓的周長相等,
∴圓轉(zhuǎn)了3圈,
而圓從一邊轉(zhuǎn)到另一邊時(shí),圓心繞三角形的一個(gè)頂點(diǎn)旋轉(zhuǎn)了三角形的一個(gè)外角的度數(shù),
圓心要繞其三角形的頂點(diǎn)旋轉(zhuǎn)120°,
∴圓繞三個(gè)頂點(diǎn)共旋轉(zhuǎn)了360°,即它轉(zhuǎn)了一圈,
∴圓回到原出發(fā)位置時(shí),共轉(zhuǎn)了4圈.
故選D.
點(diǎn)評(píng):此題考查了弧長公式,正確理解圓在三個(gè)頂點(diǎn)共轉(zhuǎn)1圈是解題關(guān)鍵,另外要求同學(xué)們熟練掌握弧長的計(jì)算公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,在等邊△ABC中,AC=3,點(diǎn)O在AC上,且AO=1.點(diǎn)P是AB上一點(diǎn),連接OP,以線段OP為一邊作正△OPD,且O、P、D三點(diǎn)依次呈逆時(shí)針方向,當(dāng)點(diǎn)D恰好落在邊BC上時(shí),則AP的長是
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察本題的三個(gè)圖形,思考下列問題
(1)如圖1,正方形ABCD中,點(diǎn)M是CD上異于端點(diǎn)的任意一點(diǎn),過點(diǎn)C作CN⊥BM于O,且交AD于N點(diǎn).求證:BM=CN;
(2)如圖2,等邊△ABC中,點(diǎn)M是CA上異于端點(diǎn)的任意一點(diǎn),過點(diǎn)C作射線CN交AB于點(diǎn)N、交BM于點(diǎn)O,且使∠BOC=120°.
請(qǐng)你判斷此時(shí)BM與CN的大小關(guān)系,并證明你的結(jié)論.
(3)如圖3,正n邊形ABCDE…An中,點(diǎn)M是CD上異于端點(diǎn)的任意一點(diǎn),過點(diǎn)C作射線CN交DE于點(diǎn)N、交BM于點(diǎn)O,且使BM=CN.設(shè)此時(shí)∠BOC的大小為y,請(qǐng)你寫出y與n之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香坊區(qū)三模)如圖,在等邊△ABC中,點(diǎn)D、E分別為AB、AC邊的中點(diǎn),點(diǎn)F為BC邊上一點(diǎn),CF=1,連接DF,以DF為邊作等邊△DFG,連接AG,且∠DAG=90°,則線段EF的長為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,以AB為邊向形外作△ABD,使∠ADB=120°,再以點(diǎn)C為旋轉(zhuǎn)中心把△CBD旋轉(zhuǎn)到△CAE,則下列結(jié)論:①D、A、E三點(diǎn)共線;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊△ABC中,AC=3,點(diǎn)O在AC上,且AO=1.點(diǎn)P是AB上一點(diǎn),連接OP,以線段OP為一邊作正△OPD,且O、P、D三點(diǎn)依次呈逆時(shí)針方向,當(dāng)點(diǎn)D恰好落在邊BC上時(shí),則AP的長是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案