如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求直線CD的解析式;
(2)是否存在x軸上的點(diǎn)E,使得以A、O、E為頂點(diǎn)的三角形與△DAO相似?若存在,請寫出符合條件的點(diǎn)E的坐標(biāo);若不存在,請說明理由.
(1)∵x2-7x+12=0,
∴(x-3)(x-4)=0,
解得:x=3或x=4,
∵OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個(gè)根,且OA>OB,
∴OA=4,OB=3,
∴點(diǎn)A(0,4),點(diǎn)B(-3,0),
∵四邊形ABCD是平行四邊形,
∴BC=AD=6,
∴OC=BC-OB=3,
∴點(diǎn)C(3,0),點(diǎn)D(6,4),
設(shè)直線CD的解析式為:y=kx+b,
3k+b=0
6k+b=4
,
解得:
k=
4
3
b=-4
,
故直線CD的解析式為:y=
4
3
x-4;

(2)存在.
∵點(diǎn)E在x軸上,
∴∠AOE=90°,
∵△DAO中,∠DAO=90°,
∴∠AOE=∠DAO,
當(dāng)OA:AD=OE:OA時(shí),△OAE△ADO,
4
6
=
OE
4
,
解得:OE=
8
3
,
∴點(diǎn)E的坐標(biāo)為:(
8
3
,0)或(-
8
3
,0);
當(dāng)OA:OA=OE:AD時(shí),△OAE△AOD,
4
4
=
OE
6

解得:OE=6,
∴點(diǎn)E的坐標(biāo)為:(6,0)或(-6,0);
∴符合條件的點(diǎn)E的坐標(biāo)為:(
8
3
,0),(-
8
3
,0),(6,0)或(-6,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某早餐店每天的利潤y(元)與售出的早餐x(份)之間的函數(shù)關(guān)系如圖所示.當(dāng)每天售出的早餐超過150份時(shí),需要增加一名工人.
(1)該店每天至少要售出______份早餐才不虧本;
(2)求出150<x≤300時(shí),y關(guān)于x的函數(shù)解析式;
(3)要使每天有120元以上的盈利,至少要售出多少份早餐?
(4)該店每出售一份早餐,盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,則當(dāng)______時(shí),得>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形OABC的頂點(diǎn)B的坐標(biāo)為B(8,7),動點(diǎn)P從原點(diǎn)O出發(fā),以每秒2個(gè)單位的速度沿折線OA-AB運(yùn)動,到點(diǎn)B時(shí)停止,同時(shí),動點(diǎn)Q從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度在線段CO上運(yùn)動,當(dāng)一個(gè)點(diǎn)停止時(shí),另一個(gè)點(diǎn)也隨之而停止.在運(yùn)動過程中,當(dāng)線段PQ恰好經(jīng)過點(diǎn)M(3,2)時(shí),運(yùn)動時(shí)間t的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩個(gè)同學(xué)同時(shí)從各自的家里返回同一所學(xué)校,他們距學(xué)校的路程s(千米)與行走時(shí)間t(小時(shí))之間的關(guān)系如圖所示.請根據(jù)圖象所提供的信息解答下列問題:
(1)分別求出甲、乙兩同學(xué)距學(xué)校的路程s(千米)與t(小時(shí))之間的函數(shù)關(guān)系式;
(2)在什么時(shí)間,甲、乙兩同學(xué)距學(xué)校的路程相等在什么時(shí)間段內(nèi),甲同學(xué)比乙同學(xué)離學(xué)校遠(yuǎn)在什么時(shí)間段內(nèi),甲同學(xué)比乙同學(xué)離學(xué)校近?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-
3
3
x+2與x軸,y軸分別相交于點(diǎn)A,B.將△AOB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)α角(0°<α<360°),可得△COD.

(1)求點(diǎn)A,B的坐標(biāo);
(2)當(dāng)點(diǎn)D落在直線AB上時(shí),直線CD與OA相交于點(diǎn)E,△COD和△AOB的重疊部分為△ODE(圖①).求證:△ODE△ABO;
(3)除了(2)中的情況外,是否還存在△COD和△AOB的重疊部分與△AOB相似,若存在,請指出旋轉(zhuǎn)角α的度數(shù);若不存在,請說明理由;
(4)當(dāng)α=30°時(shí)(圖②),CD與OA,AB分別相交于點(diǎn)P,M,OD與AB相交于點(diǎn)N,試求△COD與△AOB的重疊部分(即四邊形OPMN)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線AB與x軸、y軸分別交于A和B,OA=4,且OA、OB長是關(guān)于x的方程x2-mx+12=0的兩實(shí)根,以O(shè)B為直徑的⊙M與AB交于C,連接CM并延長交x軸于N.
(1)求⊙M的半徑.
(2)求線段AC的長.
(3)若D為OA的中點(diǎn),求證:CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某地長途汽車客運(yùn)公司規(guī)定,旅客可隨身攜帶一定重量的行李,如果超過規(guī)定質(zhì)量,則需要購買行李票,行李票費(fèi)用y(元)是行李重量x(千克)的一次函數(shù),根據(jù)圖象回答下列問題:
(1)求y與x之間的函數(shù)關(guān)系式.
(2)求旅客最多可免費(fèi)攜帶多少千克行李?
(3)某旅客所買的行李票的費(fèi)用為4~15元,求他所帶行李的質(zhì)量范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l:y=-
3
3
x+
3
交x軸于點(diǎn)A,交y軸于點(diǎn)B,將△AOB沿直線l翻折,點(diǎn)O的對應(yīng)點(diǎn)C恰好落在雙曲線y=
k
x
(k>0)
上.
(1)求k的值;
(2)將△ABC繞AC的中點(diǎn)旋轉(zhuǎn)180°得到△PCA,請判斷點(diǎn)P是否在雙曲線y=
k
x
上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案