某公司有甲種原料260kg,乙種原料270kg,計(jì)劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤(rùn)900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤(rùn)1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg)乙(kg)件數(shù)(件)
A5xx
B4(40-x)40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說(shuō)明理由;
(3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤(rùn)y元,將y表示為x的函數(shù),并求出最大利潤(rùn).

解:(1)表格分別填入:A甲種原料8x,B乙種原料9(40-x);

(2)根據(jù)題意得,,
由①得,x≤25,
由②得,x≥22.5,
∴不等式組的解集是22.5≤x≤25,
∵x是正整數(shù),
∴x=23、24、25,
共有三種方案:
方案一:A產(chǎn)品23件,B產(chǎn)品17件,
方案二:A產(chǎn)品24件,B產(chǎn)品16件,
方案三:A產(chǎn)品25件,B產(chǎn)品15件;

(3)y=900x+1100(40-x)=-200x+44000,
∵-200<0,
∴y隨x的增大而減小,
∴x=23時(shí),y有最大值,
y最大=-200×23+44000=39400元.
分析:(1)根據(jù)總件數(shù)=單件需要的原料×件數(shù)列式即可;
(2)根據(jù)兩種產(chǎn)品所需要的甲、乙兩種原料列出不等式組,然后求解即可;
(3)根據(jù)總利潤(rùn)等于兩種產(chǎn)品的利潤(rùn)之和列式整理,然后根據(jù)一次函數(shù)的增減性求出最大利潤(rùn)即可.
點(diǎn)評(píng):本題考查了一次函數(shù)的應(yīng)用,一元一次不等式組的應(yīng)用,讀懂題目信息,準(zhǔn)確找出題中的等量關(guān)系和不等量關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿遷)某公司有甲種原料260kg,乙種原料270kg,計(jì)劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤(rùn)900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤(rùn)1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg) 乙(kg) 件數(shù)(件)
A 5x x
B 4(40-x) 40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說(shuō)明理由;
(3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤(rùn)y元,將y表示為x的函數(shù),并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014年中考數(shù)學(xué)二輪精品復(fù)習(xí)方案設(shè)計(jì)型問(wèn)題練習(xí)卷(解析版) 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計(jì)劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤(rùn)900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤(rùn)1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.

1)完成下表

 

甲(kg

乙(kg

件數(shù)(件)

A

 

5x

x

B

440-x

 

40-x

2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說(shuō)明理由;

3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤(rùn)y元,將y表示為x的函數(shù),并求出最大利潤(rùn).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(江蘇宿遷卷)數(shù)學(xué)(解析版) 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計(jì)劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤(rùn)900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤(rùn)1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.

(1)完成下表

 

甲(kg)

乙(kg)

件數(shù)(件)

A

 

5x

x

B

4(40﹣x)

 

40﹣x

(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說(shuō)明理由;

(3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤(rùn)y元,將y表示為x的函數(shù),并求出最大利潤(rùn).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:宿遷 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計(jì)劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤(rùn)900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤(rùn)1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表
甲(kg) 乙(kg) 件數(shù)(件)
A 5x x
B 4(40-x) 40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說(shuō)明理由;
(3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤(rùn)y元,將y表示為x的函數(shù),并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案