【題目】如圖,已知點(diǎn)的直徑延長(zhǎng)線上,點(diǎn)上,過(guò),與的延長(zhǎng)線相交于的切線,,

1)求證:;

2)求的長(zhǎng);

3)若的平分線與交于點(diǎn),的內(nèi)心,求的長(zhǎng).

【答案】1)見(jiàn)解析;(2;(3

【解析】

1)利用同角的余角相等得出∠E=ECD,從而得出結(jié)論;

2)利用直角△OCD和直角△ADE中的勾股定理列出方程解得BD的長(zhǎng);

3)連接,,,根據(jù)平分求出,利用同弧所對(duì)的圓周角相等得出,從而得出,即FP=FB.

解:(1)證明:連接,

的切線,

,

,

,

,

,

,

2)∵,

,

∴由勾股定理可得,,

∴由勾股定理可得,,

,

(舍去).

3)連接,,,

平分,

,

為直徑,,

的內(nèi)心,

,

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A1,0),已知拋物線y=﹣x2+mx2mm是常數(shù)),頂點(diǎn)為P

1)當(dāng)拋物線經(jīng)過(guò)點(diǎn)A時(shí),求頂點(diǎn)P坐標(biāo);

2)等腰RtAOB,點(diǎn)B在第四象限,且OAOB.當(dāng)拋物線與線段OB有且僅有兩個(gè)公共點(diǎn)時(shí),求m滿足的條件;

3)無(wú)論m取何值,該拋物線都經(jīng)過(guò)定點(diǎn)H.當(dāng)∠AHP45°,求此拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C將線段AB分成兩部分,若AC2BCAB(ACBC),則稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行拋物線課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到黃金拋物線,類似地給出黃金拋物線的定義:若拋物線yax2+bx+c,滿足b2ac(b≠0),則稱此拋物線為黃金拋物線.

()若某黃金拋物線的對(duì)稱軸是直線x2,且與y軸交于點(diǎn)(0,8),求y的最小值;

()若黃金拋物線yax2+bx+c(a0)的頂點(diǎn)P(13),把它向下平移后與x軸交于A(+3,0)B(x0,0),判斷原點(diǎn)是否是線段AB的黃金分割點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線的部分圖象,其頂點(diǎn)為,與軸交于點(diǎn),與軸的一個(gè)交點(diǎn)為,連接.以下結(jié)論:①;②拋物線經(jīng)過(guò)點(diǎn);③;④當(dāng)時(shí), .其中正確的是(

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平移一條拋物線,如果平移后的新拋物線經(jīng)過(guò)原拋物線頂點(diǎn),且新拋物線的對(duì)稱軸是y軸,那么新拋物線稱為原拋物線的“影子拋物線”.

1)已知原拋物線表達(dá)式是,求它的影子拋物線的表達(dá)式;

2)已知原拋物線經(jīng)過(guò)點(diǎn)(10),且它的影子拋物線的表達(dá)式是,求原拋物線的表達(dá)式;

3)小明研究后提出:“如果兩條不重合的拋物線交y軸于同一點(diǎn),且它們有相同的“影子拋物線”,那么這兩條拋物線的頂點(diǎn)一定關(guān)于y軸對(duì)稱.”你認(rèn)為這個(gè)結(jié)論成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】423日,為迎接世界讀書(shū)日,某書(shū)城開(kāi)展購(gòu)書(shū)有獎(jiǎng)活動(dòng).顧客每購(gòu)書(shū)滿100元獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則為:一個(gè)不透明的袋子中裝有4個(gè)小球,小球上分別標(biāo)有數(shù)字1,2,3,4,它們除所標(biāo)數(shù)字外完全相同,搖勻后同時(shí)從中隨機(jī)摸出兩個(gè)小球,則兩球所標(biāo)數(shù)字之和與獎(jiǎng)勵(lì)的購(gòu)書(shū)券金額的對(duì)應(yīng)關(guān)系如下:

兩球所標(biāo)數(shù)字之和

3

4

5

6

7

獎(jiǎng)勵(lì)的購(gòu)書(shū)券金額(元)

0

0

30

60

90

1)通過(guò)列表或畫(huà)樹(shù)狀圖的方法計(jì)算摸獎(jiǎng)一次獲得90元購(gòu)書(shū)券的概率;

2)書(shū)城規(guī)定:如果顧客不愿意參加摸獎(jiǎng),那么可以直接獲得30元的購(gòu)書(shū)券.參加摸獎(jiǎng)直接獲得購(gòu)書(shū)券兩種方式中,你認(rèn)為哪種方式對(duì)顧客更合算?請(qǐng)通過(guò)求平均教的方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB4E,F分別是邊ABAD上的動(dòng)點(diǎn),AEDF,連接DE,CF交于點(diǎn)P,過(guò)點(diǎn)PPKBC,且PK2,若∠CBK的度數(shù)最大時(shí),則BK長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是矩形ABCD的對(duì)角線的交點(diǎn),E,F(xiàn),G,H分別是OA,OB,OC,OD上的點(diǎn),且AE=BF=CG=DH.

(1)求證:四邊形EFGH是矩形;

(2)若E,F(xiàn),G,H分別是OA,OB,OC,OD的中點(diǎn),且DG⊥AC,OF=2cm,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,P是邊AD上的一動(dòng)點(diǎn),連接BP、CP,過(guò)點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交AD邊于點(diǎn)M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.

1)說(shuō)明△ABM∽△APB;并求出y關(guān)于x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍;

2)當(dāng)AP=4時(shí),求sin∠EBP的值;

3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案