【題目】如圖,已知四邊形ABCD內接于⊙O,連結BD,∠BAD=105°,∠DBC=75°.若⊙O的半徑為3,則弧BC的長是( )

A. B. π C. D.

【答案】B

【解析】

根據(jù)圓內接四邊形的對角互補得出∠DCB=180°105°=75°,根據(jù)三角形的內角和得出∠BDC=30°,根據(jù)同弧所對的圓周角等于圓心角的一半得出∠BOC=60°,根據(jù)弧長計算公式即可算出答案.

連接OB,OC,

∵四邊形ABCD內接于圓O

∴∠C+BAD=180°,

∵∠BAD=105°,

∴∠DCB=180°105°=75°,

∵∠DBC=75°,

∴∠DCB=DBC=75,

∴∠BDC=30°,

∴∠BOC=60°,

∴弧BC的長為:.

故答案為:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(﹣1,0)、B(2,﹣3)兩點在一次函數(shù)y1=﹣x+m與二次函數(shù)y2=ax2+bx﹣3的圖象上.

(1)求m的值和二次函數(shù)的解析式.

(2)請直接寫出使y1>y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有RtABC,∠BAC=90°,AB=AC,A(-3,0),B(0,1),C(m,n)。

(1)請直接寫出C點坐標。

(2)ABC 沿x軸的正方向平移t個單位,、兩點的對應點、正好落在反比例函數(shù)在第一象限內圖象上。請求出t,k的值。

(3)(2)的條件下,問是否存x軸上的點M和反比例函數(shù)圖象上的點N,使得以、M、N為頂點的四邊形構成平行四邊形?如果存在,請求出所有滿足條件的點M和點N的坐標;如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為維護南海主權,我海軍艦艇加強對南海海域的巡航,日上午時,我海巡號艦艇在觀察點處觀測到其正東方向海里處有一燈塔,該艦艇沿南偏東的方向航行,時到達觀察點,測得燈塔位于其北偏西方向,求該艦艇的巡航速度?(結果保留整數(shù))

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防疾病,某單位對辦公室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,yx成反比例(如圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:

(1)藥物燃燒時,y關于x的函數(shù)關系式為________,自變量x的取值范為________;藥物燃燒后,y關于x的函數(shù)關系式為________.

(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時員工方可進辦公室,那么從消毒開始,至少需要經過________分鐘后,員工才能回到辦公室;

(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C,D兩點,點E⊙O上一動點,CF⊥AEF,則弦AB的長度為________;點E在運動過程中,線段FG的長度的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,以AB為直徑的⊙OBC于點D,交AC于點E.

(1)∠BAC為銳角時,如圖,求證:∠CBE=∠BAC;

(2)∠BAC為鈍角時,如圖②,CA的延長線與⊙O相交于點E,(1)中的結論是否仍然成立?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O是一點,過點B作⊙O的切線,與AC延長線交于點D,連接BC,OE//BC交⊙O于點E,連接BEAC于點H。(1)求證:BE平分∠ABC;(2)連接OD,若BH=BD=2,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx(a<0)的圖象過坐標原點O,與x軸的負半軸交于點A,過A點的直線與y軸交于B,與二次函數(shù)的圖象交于另一點C,且C點的橫坐標為﹣1,AC:BC=3:1.

(1)求點A的坐標;

(2)設二次函數(shù)圖象的頂點為F,其對稱軸與直線AB及x軸分別交于點D和點E,若FCD與AED相似,求此二次函數(shù)的關系式.

查看答案和解析>>

同步練習冊答案