【題目】某港口位于東西方向的海岸線上.遠航號、海天號輪船同時離開港口,各自沿一固定方向航行,遠航號每小時航行16海里,海天號每小時航行12海里.它們離開港口一個半小時后相距30海里.如果知道遠航號沿東北方向航行,能知道海天號沿哪個方向航行?為什么?

【答案】“海天”號沿西北方向航行

【解析】試題分析:根據路程=速度×時間分別求得PQ、PR的長,再進一步根據勾股定理的逆定理可以證明三角形PQR是直角三角形,從而求解.

試題解析:根據題意,得

PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).

∵242+182=302

即PQ2+PR2=QR2 ,

∴∠QPR=90°.

由“遠航號”沿東北方向航行可知,∠QPS=45°,則∠SPR=45°,即“海天”號沿西北方向航行.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,三角形ABC的位置如圖所示.

(1)請寫出A、B、C三點的坐標;

(2)你能想辦法求出三角形ABC的面積嗎?

(3)將三角形ABC向右平移6個單位,再向上平移2個單位,請在圖中作出平移后的三角形A′ B′ C′,并寫出三角形A′ B′ C各點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的等邊△ABC和邊長為1的等邊△A′B′C′,它們的邊B′C′,BC位于同一條直線l上,開始時,點C′與B重合,△ABC固定不動,然后把△A′B′C′自左向右沿直線l平移,移出△ABC外(點B′與C重合)停止,設△A′B′C′平移的距離為x,兩個三角形重合部分的面積為y,則y關于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD被直線BD,DF所截,AB∥CD,F(xiàn)B⊥DB,垂足為B,EG平分∠DEB,∠CDE=52°,

∠F=26°.

(1)求證:EG⊥BD;(2)求∠CDB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: ,點P、H、B、C、A在同一個平面上.點H、B、C在同一條直線上,且PH⊥HC.

(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求山坡A、B兩點間的距離(結果精確到0.1米).
(參考數(shù)據: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個零件的形狀如圖1所示,按規(guī)定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如圖2所示.

1 2

(1)你認為這個零件符合要求嗎?為什么?

(2)求這個零件的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了進一步改進本校七年級數(shù)學教學,提高學生學習數(shù)學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查.我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計,現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個長方形的長是,寬是,周長是,面積是

1)寫出變化而變化的關系式;

2)寫出變化而變化的關系式;

3)當時, 等于多少? 等于多少?

4)當增加時, 增加多少? 增加多少?

查看答案和解析>>

同步練習冊答案