【題目】如圖,一船在某燈墻C正東方向10海里處的A點,以25海里/時的速度沿北偏西30°方向航行.
(1)問多長時間后,船距燈塔最近?
(2)求船到達燈塔的正北方向時航行了多少海里?此時,距離燈塔有多遠?(結(jié)果保留根號)
【答案】(1)0.2小時后,船距燈塔最近;(2)船到達燈塔的正北方向時航行了20海里,此時,距離燈塔有10海里.
【解析】
(1)過C作CD⊥AB于D,根據(jù)垂線段最近,則CD最小,由三角函數(shù)求得CD,再由速度公式求得結(jié)論;
(2)根據(jù)已知條件利用三角函數(shù)即可求得BC,AB的長.
(1)過C作CD⊥AB于D,則CD最小,
由題意知∠BAC=90°﹣30°=60°,
∴AD=AC=5(海里),5÷25=0.2(小時),
故0.2小時后,船距燈塔最近;
(2)在直角△ABC中,∠BAC=60°,AC=10海里,tan∠BAC=,
所以BC=ACtan60°=10海里,AB=2AC=20海里,
答:船到達燈塔的正北方向時航行了20海里,此時,距離燈塔有10海里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學(xué)觀察得出了下面四條信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E,過點D作DF⊥AC于點F,交AB的延長線于點G.
(1)求證:DF是⊙O的切線;
(2)已知BD=2,CF=2,求AE和BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過點A(2,0),B(0,2),與x軸交于另一點C.
(1)求拋物線的解析式及點C的坐標;
(2)點P是拋物線y=﹣x2+bx+c在第一象限上的點,過點P分別向x軸、y軸作垂線,垂足分別為D,E,求四邊形ODPE的周長的最大值;
(3)如圖2,點P是拋物線y=﹣x2+bx+c在第一象限上的點,過點P作PN⊥x軸,垂足為N,交AB于M,連接PB,PA.設(shè)點P的橫坐標為t,當(dāng)△ABP的面積等于△ABC面積的時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車庫的車輛限高標志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點,頂點C的縱坐標為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫出所有正確結(jié)論的序號)
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程-(k+2)x+2k=0.
(1)試說明無論k取何值時,這個方程一定有實數(shù)根;
(2)已知等腰的一邊a=1,若另兩邊b、c恰好是這個方程的兩個根,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時,學(xué)生的注意力逐步增強,中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實驗分析可知,學(xué)生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標數(shù)最低達到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com