【題目】甲口袋中裝有3個(gè)相同的小球,它們分別寫有數(shù)值﹣1,1,5;乙口袋中裝有3個(gè)相同的小球,它們分別寫有數(shù)值﹣4,2,3.現(xiàn)從甲口袋中隨機(jī)取一球,記它上面的數(shù)值為x,再從乙口袋中隨機(jī)取一球,記它上面的數(shù)值為y.設(shè)點(diǎn)A的坐標(biāo)為(x,y),請用樹形圖或列表法,求點(diǎn)A落在第一象限的概率.

【答案】解:畫樹狀圖得:
∵共有9種等可能的結(jié)果,點(diǎn)A落在第一象限的有4種情況,
∴點(diǎn)A落在第一象限的概率為:
【解析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與點(diǎn)A落在第一象限的情況,再利用概率公式即可求得答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,直徑AC=6,對角線AC、BD交于E點(diǎn),且AB=BD,EC=1,則AD的長為(
A.
B.
C.
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家到梧州市一茶廠購買茶葉,購買茶葉數(shù)量為x千克(x>0),總費(fèi)用為y元,現(xiàn)有兩種購買方式. 方式一:若商家贊助廠家建設(shè)費(fèi)11500元,則所購茶葉價(jià)格為130元/千克;(總費(fèi)用=贊助廠家建設(shè)費(fèi)+購買茶葉費(fèi))
方式二:總費(fèi)用y(元)與購買茶葉數(shù)量x(千克)滿足下列關(guān)系式:y=
請回答下面問題:
(1)寫出購買方式一的y與x的函數(shù)關(guān)系式;
(2)如果購買茶葉超過150千克,說明選擇哪種方式購買更省錢;
(3)甲商家采用方式一購買,乙商家采用方式二購買,兩商家共購買茶葉400千克,總費(fèi)用共計(jì)74600元,求乙商家購買茶葉多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,ECF是等腰直角三角形,其中CE=CF, BC=5CF=3,BF=4.

求證:DEFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在□ABCD中,AEBCE,DF平分ADC 交線段AEF.

1)如圖1,若AE=AD,ADC=60, 請直接寫出線段CDAF+BE之間所滿足的等量關(guān)系;

2)如圖2, AE=AD,你在(1)中得到的結(jié)論是否仍然成立, 若成立,對你的結(jié)論加以證明, 若不成立, 請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,EFAB,CD分別相交于點(diǎn)EFEPEF,與∠EFD的平分線FP相交于點(diǎn)P.若∠BEP46°,則∠EPF________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地出租車計(jì)費(fèi)方法如圖,x(km)表示行駛里程,y(元)表示車費(fèi),請根據(jù)圖象解答下列問題:
(1)該地出租車的起步價(jià)是元;
(2)當(dāng)x>2時(shí),求y與x之間的函數(shù)關(guān)系式;
(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市規(guī)定:出租車起步價(jià)允許行駛的最遠(yuǎn)路程為3千米,超過3千米的部分按每千米另行收費(fèi),甲說:我乘這種出租車走了11千米,付了17;乙說:我乘這種出租車走了23千米,付了35.請你算一算這種出租車的起步價(jià)是多少元?以及超過3千米后,每千米的車費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點(diǎn)Q2, -1)向右平移2個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)R的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案