【題目】拋物線y=ax2+3與x軸的兩個交點分別為(m,0)和(n,0),則當x=m+n時,y的值為

【答案】3
【解析】解:∵拋物線y=ax2+3與x軸的兩個交點分別為(m,0)和(n,0), ∴該拋物線的對稱軸方程為﹣ = ,即m+n=0,
∴x=m+n=0,
∴y=0+3=3,即y=3.
故答案是:3.
【考點精析】認真審題,首先需要了解拋物線與坐標軸的交點(一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點O為直線AB上一點,將一直角三角板的直角頂點放在點O處.

(1)如圖1,將三角板的一邊ON與射線OB重合,過點O在三角板的內(nèi)部,作射線OC,使∠NOC:∠MOC=2:1,求∠AOC的度數(shù);

(2)如圖2,將三角板繞點O逆時針旋轉(zhuǎn)一定角度到圖2的位置,過點O在三角板MON的內(nèi)部作射線OC,使得OC恰好是∠MOB對的角平分線,此時∠AOM∠NOC滿足怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角尺繞點O逆時針旋轉(zhuǎn)至圖2,使點NOC的反向延長線上,請直接寫出圖中∠MOB的度數(shù);

(2)將圖1中的三角尺繞點O逆時針旋轉(zhuǎn)至圖3,使一邊OM∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù)

(3)將圖1中的三角尺繞點O順時針旋轉(zhuǎn)至圖4,使ON∠AOC的內(nèi)部,請?zhí)骄?/span>∠AOM∠NOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的半徑為4,OA為半徑,CD為弦,OACD交于點M,將弧CD沿著CD翻折后,點A與圓心O重合,延長OAP,使AP=OA,連接PC.

(1)求CD的長;

(2)求證:PCO的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線分別交x軸、y軸于A、B兩點,點P是線段AB上的一動點,以P為圓心,r為半徑畫圓.

(1)若點P的橫坐標為﹣3,當⊙Px軸相切時,則半徑r ,此時⊙Py軸的位置關(guān)系是 .(直接寫結(jié)果)

(2)若,當⊙P與坐標軸有且只有3個公共點時,求點P的坐標.

(3)如圖2,當圓心PA重合,時,設(shè)點C為⊙P上的一個動點,連接OC,將線段OC繞點O順時針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長的最值并直接寫出對應的點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于點E,交AC于點F,過點O作OD⊥AC于點D,下列四個結(jié)論:

①EF=BE+CF;

②∠BOC=90°+∠A;

③點O到△ABC各邊的距離相等;

④設(shè)OD=m,AE+AF=n,則S△AEF=mn.

其中正確的結(jié)論是( )

A. ①②③ B. ①②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,且CD=24,點M在⊙O上,MD經(jīng)過圓心O,聯(lián)結(jié)MB.
(1)若BE=8,求⊙O的半徑;
(2)若∠DMB=∠D,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶市中小學教育大力提倡“2+2”素質(zhì)教育,在開展的幾年來,取得了重大成果.小明對本學期全班50名同學所選擇的活動項目進行了統(tǒng)計,根據(jù)收集的數(shù)據(jù)制作了下表:

1)請完善表格中的數(shù)據(jù):

2)根據(jù)上述表格中的人數(shù)百分比,繪制合適的統(tǒng)計圖.

查看答案和解析>>

同步練習冊答案