【題目】書香校園活動中,某校為了解學生家庭藏書情況,隨機抽取本校部分學生進行調(diào)查,并繪制成部分統(tǒng)計圖表如下:

類別

家庭藏書m

學生人數(shù)

A

0≤m≤25

20

B

26≤m≤50

a

C

51≤m≤75

50

D

m≥76

66

根據(jù)以上信息,解答下列問題:

1)該調(diào)查的樣本容量為   ,a   

2)隨機抽取一位學生進行調(diào)查,剛好抽到A類學生的概率是   ;

3)若該校有2000名學生,請估計全校學生中家庭藏書不少于76本的人數(shù).

【答案】1200,64;(20.1;(3)全校學生中家庭藏書不少于76本的人數(shù)為660人.

【解析】

1)根據(jù)類別C的人數(shù)和所占的百分比即可求出樣本容量,用樣本容量減去A,C,D所對應(yīng)的人數(shù)即可求出a的值;

2)用類別A所對應(yīng)的人數(shù)除以樣本容量即可求出抽到A類學生的概率;

3)用2000乘以藏書不少于76本的概率即可得出答案.

1)調(diào)查的樣本容量為50÷25%200(人),

a20020506664(人),

故答案為20064;

2)剛好抽到A類學生的概率是20÷2000.1,

故答案為 0.1;

3)全校學生中家庭藏書不少于76本的人數(shù):2000×660(人).

答:全校學生中家庭藏書不少于76本的人數(shù)為660人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為全面貫徹黨的教育方針,堅持“健康第一的教育理念,促進學生健康成長,提高體質(zhì)健康水平,成都市調(diào)整體育中考實施方案:分值增加至60,男1000(女80米)必考,足球、籃球、排球“三選一”……從2019年秋季新入學的七年級起開始實施,某1學為了解七年級學生對三大球類運動的喜愛情況,從七年級學生中隨機抽取部分學生進行調(diào)查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖。請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)求參與調(diào)查的學生中,喜愛排球運動的學生人數(shù),并補全條形圖

2)若該中學七年級共有400名學生,請你估計該中學七年級學生中喜愛籃球運動的學生有多少名?

3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成相應(yīng)學習任務(wù):

相似四邊形

如果兩個四邊形的角分別相等,邊成比例,那么這兩個四邊形叫做相似四邊形.

如圖1中,兩個四邊形中,,因此四邊形四邊形

類似與相似三角形,我們也可以用較少的條件判定兩個四邊形相似.

判定:四邊對應(yīng)成比例且有一個角對應(yīng)相等的兩個四邊形相似.

如圖2,在四邊形中,,求證:四邊形

證明:分別連接,

,

,

···

學習任務(wù):

(1)判斷下而命題是否正確?若不正確,請舉出反例.

①四個角分別相等的兩個四邊形相似;

②四條邊對應(yīng)成比例的兩個四邊形相似;

(2)請將材料中判定方法的證明過程補充完整;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)yx+2的圖象與函數(shù)yk≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)yk≠0)的圖象于點C,連接AC,若ABC的面積為8.則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】、是半徑為上的兩條弦,且,,那么,的弦心距__________,圓周角所對的弧等于__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1x軸于點(a,0)和點(b,0),交y軸于點C,拋物線頂點為D,下列四個結(jié)論中:①當x0時,y0;②若a=﹣1,則b3;③拋物線上有兩點Px1,y1)和Qx2,y2),若x11x2,且x1+x22,則y1y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點G、F分別在x軸和y軸上,當m2時,四邊形EDFG周長的最小值為6.其中正確的有( 。﹤

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為M的拋物線yax2+bx+3x軸交于A3,0),B(﹣1,0)兩點,與y軸交于點C

1)求這條拋物線對應(yīng)的函數(shù)表達式;

2)問在y軸上是否存在一點P,使得PAM為直角三角形?若存在,求出點P的坐標;若不存在,說明理由.

3)若在第一象限的拋物線下方有一動點D,滿足DAOA,過DDGx軸于點G,設(shè)ADG的內(nèi)心為I,試求CI的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有六個矩形水池環(huán)繞,矩形的內(nèi)側(cè)邊所在直線恰好圍成正六邊形ABCDEF,正六邊形的邊長為4米.要從水源點P處向各水池鋪設(shè)供水管道,這些管道的總長度最短是_____米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與雙曲線相交于點A(m,3),與x軸交于點C.

(1)求雙曲線的解析式;

(2)Px軸上,如果ACP的面積為3,求點P的坐標.

查看答案和解析>>

同步練習冊答案