【題目】如圖,已知銳角ABC內(nèi)接于⊙O,連接AO并延長交BC于點(diǎn)D

1)求證:ACB+BAD=90°;

2)過點(diǎn)DDEABE,若∠ADC=2ACB.求證:AC=2DE.

【答案】(1)證明見解析;(2)證明見解析

【解析】試題分析:(1)延長AD交⊙O于點(diǎn)F,連接BF.根據(jù)直徑對的圓周角是直角得出∠ABF=90°,AFB +BAD=90°,同弧所對的圓周角相等∠AFB=ACB,即可證明.

2)如圖2中,過點(diǎn)OOHACH,連接BO證明即可解決問題.

試題解析:1)證明:延長AD交⊙O于點(diǎn)F,連接BF

AF為⊙O的直徑,

∴∠ABF=90°

∴∠AFB +BAD=90°,

∵∠AFB=ACB,

∴∠ACB+BAD=90°

2)證明:如圖2中,過點(diǎn)OOHACH,連接BO

∵∠AOB=2ACB,

ADC=2ACB,

∴∠AOB=ADC,

∴∠BOD=BDO

BD=BO

BD=OA,

∵∠BED=AHO,ABD=AOH,

∴△BDE≌△AOH,

DE=AH,

OHAC,

AH=CH=AC,AC=2DE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(-10),B3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)AB的對應(yīng)點(diǎn)C,D,連接AC,BDCD

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC(提示:平行四邊形的面積=×)

2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使SPAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PCPO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合)的值是否發(fā)生變化,若不變請求出該值,若會(huì)變請并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知(a+b2=7,(a-b2=4,求a2+b2ab的值.

2)分解因式:

x2-8xy+16y2

②(x+y+12-x-y+12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,的中點(diǎn),,于點(diǎn)

1)求證:四邊形是菱形.

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cm,BC10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC中,ADBC邊上的中線,則有SABDSACD,許多面積問題可以轉(zhuǎn)化為這個(gè)基本模型解答.如圖②,已知ABC的面積為1,把ABC各邊均順次延長一倍,連結(jié)所得端點(diǎn),得到A1B1C1,即將ABC向外擴(kuò)展了一次,則擴(kuò)展一次后的A1B1C1的面積是_____,如圖③,將ABC向外擴(kuò)展了兩次得到A2B2C2,……,若將ABC向外擴(kuò)展了n次得到AnBnn,則擴(kuò)展n次后得到的AnBnn面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為D.

1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);

2)若該拋物線經(jīng)過點(diǎn)A1,m),求m的值;

3)在(2)的條件下,拋物線與x軸是否有交點(diǎn),若有,求出交點(diǎn)坐標(biāo),若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A ,D,B,E在同一條直線上,且AD = BE, AC = DF,補(bǔ)充下列其中一個(gè)條件后,不一定能得到ABCDEF 的是(

A.BC = EFB.AC//DFC.C = FD.BAC = EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.

(1)如果AC=6cm,BC=8cm,試求△ACD的周長;

(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案