【題目】在式子-3<0,4x+3y>0,x=3,a2+2a+1≤8,x2+2xyy2,x≠5,x2≥0,不等式有(  )

A. 2 B. 3 C. 4 D. 5

【答案】D

【解析】

根據(jù)不等式的定義,用“>”、“≥”、“<”、“≤”、“≠”等不等號表示不相等關系的式子是不等式,依次判斷7個式子即可.

根據(jù)不等式的定義,依次分析可得:-3<0,4x+3y>0,a2+2a+1≤8,x≠5,x2≥0,5個式子符合定義,是不等式,而x=3是等式,x2+2xy+y2是代數(shù)式,

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,C=90°,ABC=60°,BD平分∠ABC , 若AD=6,則CD是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=8cm,BC=4cm,AB=5cm.從初始時刻開始,動點P,Q 分別從點A,B同時出發(fā),運動速度均為1cm/s,動點P沿A﹣B﹣﹣C﹣﹣E的方向運動,到點E停止;動點Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運動,到點D停止,設運動時間為xs,△PAQ的面積為ycm2,(這里規(guī)定:線段是面積為0的三角形)

解答下列問題:

(1)當x=2s時,y= cm2;當x=s時,y= cm2

(2)當5≤x≤14 時,求y與x之間的函數(shù)關系式.

(3)當動點P在線段BC上運動時,求出時x的值.

(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x223x化成ax2+bx+c0a0)的形式后,ab,c的值分別為(  )

A. 0,2,﹣3B. 1,2,﹣3C. 1,﹣2,3D. 1,3,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結DB,過點D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
b2+ab=c2+a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程(x﹣1)(x+2)=2(x+2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(1﹣x)13x=1,則x的取值有( )個.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,矩形ABCD的AB邊在x軸上,且AB=3,AD=2,經(jīng)過點C的直線y=x﹣2與x軸、y軸分別交于點E,F(xiàn).

(1)求矩形ABCD的頂點A,B,C,D的坐標;
(2)求證:△OEF≌△BEC;
(3)P為直線y=x﹣2上一點,若SPOE=5,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF對折,若∠1=40°,則∠AEF=

查看答案和解析>>

同步練習冊答案