ABCD中,G為BC延長線上一點,射線AG與直線BD相交于E、與直線CD相交于F.

(1)求證:;

(2)求證:AE2=EF·EG;

(3)如果把“G為BC延長線上一點”改為“G為線段BC上一點(不與點B、C重合)”,其它條件不變,(2)中的結(jié)論是否成立嗎?若成立,請你加以證明;若不成立,請你說明理由.

答案:
解析:

  證明:(1)在ABCD中,AB∥CD

  ∴∠ABE=∠FDE,∠BAE=∠DFE

  ∴△ABE∽△FDE

  ∴  (3分)

  (2)∵AD∥BC

  ∴∠ADE=∠GBE,∠DAE=∠BGE

  ∴△ADE∽△GBE

  ∴

  ∴

  ∴AE2=EF·EG  (4分)

  (3)結(jié)論AE2=EF·EG成立

  證明:在ABCD中,AB∥CD

  ∴∠ABE=∠FDE,∠BAE=∠DFE

  ∴△ABE∽△FDE

  ∴

  ∵AD∥BC

  ∴∠ADE=∠GBE,∠DAE=∠BGE

  ∴△ADE∽△GBE

  ∴

  ∴

  ∴AE2=EF·EG  (4分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E為CD中點,AE與BD相交于點O,S△DOE=12cm2,則S△AOB等于( 。ヽm2
A、24B、36C、48D、144

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在?ABCD中,BD為對角線,E、F分別是AD、BD的中點,連接EF.若EF=3,則CD的長為
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,E為CD的中點,AE交BD于點F,則△EFD和△AFB的面積比為
1:4
1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,BD為對角線,EF垂直平分BD分別交AD、BC的于點E、F,交BD于點O.
(1)試說明:BF=DE;
(2)試說明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動點P、Q分別從B、D兩點同時出發(fā),沿△BAE和△DFC各邊運動一周,即點P自B→A→E→B停止,點Q自D→F→C→D停止,點P運動的路程是m,點Q運動的路程是n,當(dāng)四邊形BPDQ是平行四邊形時,求m與n滿足的數(shù)量關(guān)系.(畫出示意圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,E為AB的中點,DE交AC于F,△AEF∽
△CDF
△CDF
,相似比為
1
2
1
2
,若AF=60cm,則AC=
180
180
cm.

查看答案和解析>>

同步練習(xí)冊答案