【題目】為了解某市的空氣質(zhì)量情況,某環(huán)保興趣小組從環(huán)境監(jiān)測網(wǎng)隨機抽取了若干天的空氣質(zhì)量情況作為樣本進行統(tǒng)計.根據(jù)空氣污染指數(shù)的不同,將空氣質(zhì)量分為A、B、C、D和E五個等級,分別表示空氣質(zhì)量優(yōu)、良、輕度污染、中度污染、重度污染,并繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)圖中的信息,解答下列問題:
(1)求被抽取的天數(shù);
(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示空氣質(zhì)量為中度污染的扇形的圓心角度數(shù);
(3)在這次抽取的天數(shù)中,求空氣質(zhì)量為良占的百分比.
【答案】(1)50;(2)詳見解析;(3)36%
【解析】
(1)根據(jù)空氣質(zhì)量情況為輕度污染所占比例為20%,條形圖中空氣質(zhì)量情況為輕度污染的天數(shù)為10天,據(jù)此即可求得總天數(shù);
(2)利用總天數(shù)減去其它各類的天數(shù)即可求得中度污染的天數(shù);利用360°乘以對應的百分比即可求得對應的圓心角的度數(shù);
(3)根據(jù)題意列式計算即可.
(1)10÷20%=50(天).
答:被抽取的天數(shù)是50天;
(2)空氣質(zhì)量中度污染的天數(shù)=50﹣12﹣18﹣10﹣5=5(天),360°36°,補全條形統(tǒng)計圖如圖所示;
(3)100%=36%.
答:空氣質(zhì)量為良占的百分比為36%.
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組在活動時,老師提出了這樣一個問題:如圖1,在中,,,D是BC的中點,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使,請補充完整證明“≌”的推理過程.
求證:≌
證明:延長AD到點E,使
在和中已作,
______,
中點定義,
≌______,
探究得出AD的取值范圍是______;
(感悟)解題時,條件中若出現(xiàn)“中點”“中線”等字樣,可以考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.
(問題解決)
如圖2,中,,,AD是的中線,,,且,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩種商品原來的單價和為100元.因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.甲、乙兩種商品原來的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為開展第二課堂,組織調(diào)查了本校300名學生各自最喜愛的一項體育活動,制成了如下扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖判斷下列說法,其中正確的一項是( )
A. 在調(diào)查的學生中最喜愛籃球的人數(shù)是50人
B. 喜歡羽毛球在統(tǒng)計圖中所對應的圓心角是144°
C. 其他所占的百分比是20%
D. 喜歡球類運動的占50%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x、y的方程組,其中﹣3≤a≤1,給出下列結論:
①是方程組的解;
②當a=﹣2時,x+y=0;
③若y≤1,則1≤x≤4;
④若S=3x﹣y+2a,則S的最大值為11.
其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖),然后將剩余部分拼成一個長方形(如圖).
(1)上述操作能驗證的等式是 ;(請選擇正確的一個)
A.a2-2ab+b2=(a-b)2 B.a2-b2=(a+b)(a-b) C.a2+ab=a(a+b)
(2)應用你從(1)選出的等式,完成下列各題:
①已知x2-4y2=12,x+2y=4,求x-2y的值.
②計算:(1-)(1-)(1-)…(1-)(1-).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知△ABC,任取一點O,連AO,BO,CO,并取它們的中點D,E,F(xiàn),得△DEF,則下列說法正確的個數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com