【題目】如圖,已知直線與反比例函數(shù))圖像交于點(diǎn)A,將直線向右平移4個(gè)單位,交反比例函數(shù))圖像于點(diǎn)B,交y軸于點(diǎn)C,連結(jié)AB、AC,則△ABC的面積為_______

【答案】

【解析】分析:聯(lián)立方程組,求出A、B點(diǎn)坐標(biāo),過(guò)點(diǎn)AADy軸交BC于點(diǎn)D,求得點(diǎn)D的坐標(biāo)為(2,0),再求出點(diǎn)C的坐標(biāo),利用SABC=SABD+SACD可得答案.

詳解:聯(lián)立方程組,
解得,(舍去),
A(4,2),
將直線向右平移4個(gè)單位,

則直線BC的解析式為y=x-2;
聯(lián)立方程組
解得,(舍去),
B(2+2-1)

過(guò)點(diǎn)AADy軸交BC于點(diǎn)D,

D(4,0),
AD=4,

SABC=SABD+SACD= ×4×2+×2×(2+2-4)=2+2.

故答案為:2+2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A23)、B6,3),連接AB.如果對(duì)于平面內(nèi)一點(diǎn)P,線段AB上都存在點(diǎn)Q,使得PQ1,那么稱(chēng)點(diǎn)P是線段AB附近點(diǎn)

1)請(qǐng)判斷點(diǎn)D4.5,2.5)是否是線段AB附近點(diǎn)

2)如果點(diǎn)H m,n)在一次函數(shù)的圖象上,且是線段AB附近點(diǎn),求m的取值范圍;

3)如果一次函數(shù)y=x+b的圖象上至少存在一個(gè)附近點(diǎn),請(qǐng)直接寫(xiě)出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點(diǎn),連接CEDF,將△CBE沿CE對(duì)折,得到△CGE,延長(zhǎng)EGCD的延長(zhǎng)線于點(diǎn)H。

1)求證:CEDF;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)DBC上,DEAB于點(diǎn)E,DFBCAC于點(diǎn)FBD=CF,BE=CD.若∠AFD=145°,則∠EDF=_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某童裝專(zhuān)賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷(xiāo)售價(jià)為60元,每天可售出20件,為迎接“雙十一”,專(zhuān)賣(mài)店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷(xiāo)售量,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均可多售出2件,設(shè)每件童裝降價(jià)x元(x>0)時(shí),平均每天可盈利y元.

(1)寫(xiě)出y與x的函數(shù)關(guān)系式;

(2)根(1)中你寫(xiě)出的函數(shù)關(guān)系式,解答下列問(wèn)題:

①當(dāng)該專(zhuān)賣(mài)店每件童裝降價(jià)5元時(shí),平均每天盈利多少元?

②當(dāng)該專(zhuān)賣(mài)店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?

③該專(zhuān)賣(mài)店要想平均每天盈利600元,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖(1),已知:在ABC中,∠BAC90°,ABAC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線mCE⊥直線m,垂足分別為點(diǎn)DE.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABAC,D、AE三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DEBD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3)拓展與應(yīng)用:如圖(3),D、ED、AE三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且ABFACF均為等邊三角形,連接BDCE,若∠BDA=∠AEC=∠BAC,試判斷DEF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)某中學(xué)組織學(xué)生去福利院慰問(wèn),在準(zhǔn)備禮品時(shí)發(fā)現(xiàn),購(gòu)買(mǎi)1個(gè)甲禮品比購(gòu)買(mǎi)1個(gè)乙禮品多花40元,并且花費(fèi)600元購(gòu)買(mǎi)甲禮品和花費(fèi)360元購(gòu)買(mǎi)乙禮品的數(shù)量相等.

(1)求甲、乙兩種禮品的單價(jià)各為多少元?

(2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)甲、乙兩種禮品共30個(gè)送給福利院的老人,要求購(gòu)買(mǎi)禮品的總費(fèi)用不超過(guò)2000元,那么最多可購(gòu)買(mǎi)多少個(gè)甲禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B= 60°.

1)如圖①.若點(diǎn)E、F分別在邊AB、AD上,且BE=AF,求證:CEF是等邊三角形.

2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊ABAD上,且∠CEF=60°時(shí),CEF也是等邊三角形,

并通過(guò)畫(huà)圖驗(yàn)證了猜想;小麗通過(guò)探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了CEF是等邊三角形.請(qǐng)你根據(jù)小倩的方法,寫(xiě)出完整的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,要設(shè)計(jì)一本書(shū)的封面,封面長(zhǎng)為27cm,寬為21cm,正中央是一個(gè)與整個(gè)封面長(zhǎng)寬比例相同的矩形.如果要使四周的彩色邊襯等寬,且四周的彩色邊襯所占面積是封面面積的四分之一,應(yīng)如何設(shè)計(jì)四周邊襯的寬度?(結(jié)果保留根號(hào))

封面的長(zhǎng)寬之比為2721=97,中央矩形的長(zhǎng)寬之比也應(yīng)是97,若設(shè)上下邊襯的寬均為9xcm,則左右邊襯均為7xcm

1)用含x的代數(shù)式表示:中央矩形的長(zhǎng)為______cm,寬為______cm,中央矩形的面積為______cm2

2)列出方程并完成本題解答.

查看答案和解析>>

同步練習(xí)冊(cè)答案