【題目】如圖,兩個(gè)大小一樣的直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到△DEF的位置,AB10,DH4,平移距離為6,則陰影部分面積是_____

【答案】48

【解析】

根據(jù)平移的性質(zhì)可知:AB=DE,BE=CF;由此可求出EHCF的長(zhǎng).由于CHDF,根據(jù)成比例線段,可求出EC的長(zhǎng).由EHEC,DEEF的長(zhǎng),即可求出△ECH和△EFD的面積,進(jìn)而可求出陰影部分的面積.

根據(jù)題意得:DE=AB=10;BE=CF=6;CHDF,∴EH=104=6;EHHD=ECCF,即64=EC6,∴EC=9,∴SEFD=×10×9+6=75;SECH=×9×6=27,∴S陰影部分=7527=48.故答案為48

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E,F(xiàn)分別為PB,PC的中點(diǎn),△PEF,△PDC,△PAB的面積分別為S、S1、S2 , 若S=2,則S1+S2=( )

A.4
B.6
C.8
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠B=55°,點(diǎn)D是斜邊AB的中點(diǎn),那么∠ACD的度數(shù)為( )

A.15°
B.25°
C.35°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊直角三角板的直角頂點(diǎn)繞著矩形)對(duì)角線交點(diǎn)旋轉(zhuǎn)(如圖①→②→③),、分別為直角三角板的直角邊與矩形的邊、的交點(diǎn).

1)發(fā)現(xiàn):在圖①中,當(dāng)三角板的一直角邊與重合,易證,

證明方法如下:連接,

為矩形

又∵

又∵

在圖③中,當(dāng)三角板的一直角邊與重合,求證:

2)根據(jù)以上學(xué)習(xí)探究:圖②中、、這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:用3A型車和2B型車載滿貨物一次可運(yùn)貨共19噸;用2A型車和3B型車載滿貨物一次可運(yùn)貨共21噸.

(1)1A型車和1B型車都載滿貨物一次分別可以運(yùn)貨多少噸?

(2)某物流公司現(xiàn)有49噸貨物,計(jì)劃同時(shí)租用A型車輛,B型車輛,一次運(yùn)完,且恰好每輛車都載滿貨物.

、的值;

A型車每輛需租金130/,B型車每輛需租金200/請(qǐng)求出租車費(fèi)用最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)舉辦的中國(guó)漢字聽寫大會(huì)節(jié)目受到中學(xué)生的廣泛關(guān)注.某中學(xué)為了了解學(xué)生對(duì)觀看中國(guó)漢字聽寫大會(huì)節(jié)目的喜愛程度,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計(jì)圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡),C類(一般),D類(不喜歡).已知A類和B類所占人數(shù)的比是59,請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問題:

1)寫出本次抽樣調(diào)查的樣本容量;

2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)若該校有2000名學(xué)生.請(qǐng)你估計(jì)觀看中國(guó)漢字聽寫大會(huì)節(jié)目不喜歡的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(﹣2,﹣1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.

(1)求該一次函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).下表是該市居民戶一表生活用水階梯式計(jì)費(fèi)價(jià)格表的部分信息:

自來水銷售價(jià)格

污水處理價(jià)格

每戶每月用水量

單價(jià):元/

單價(jià):元/

噸及以下

超過 17 噸但不超過 30 噸的部分

超過 30 噸的部分

說明:每戶產(chǎn)生的污水量等于該戶自來水用水量;水費(fèi)=自來水費(fèi)用+污水處理費(fèi).

1)設(shè)小王家一個(gè)月的用水量為噸,所應(yīng)交的水費(fèi)為元,請(qǐng)寫出的函數(shù)關(guān)系式;

2)隨著夏天的到來,用水量將增加.為了節(jié)省開支,小王計(jì)劃把7月份的水費(fèi)控制在不超過家庭月收入的.若小王家的月收入為元,則小王家7月份最多能用多少噸水?

查看答案和解析>>

同步練習(xí)冊(cè)答案