在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2,其中正確的是( )

A.②④
B.①④
C.②③
D.①③
【答案】分析:①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=∠BAF,AD=AF,因?yàn)椤螧AC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可證明△AEF≌△AED;
②由于∠DAE=45°,若∠AED=45°,那么∠ADE=90°,而AD不一定與BC垂直,由此即可確定是否是否正確;
③根據(jù)①知道△ADE≌△AFE,得CD=BF,DE=EF;由此即可確定說法是否正確;
④據(jù)①BF=CD,EF=DE,∠FBE=90°,根據(jù)勾股定理判斷.
解答:解:①根據(jù)旋轉(zhuǎn)的性質(zhì)知∠CAD=∠BAF,AD=AF,
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°.
∴∠EAF=45°,
∴△AEF≌△AED;
故①正確;
②∵∠DAE=45°,若∠AED=45°,
那么∠ADE=90°,而AD不一定與BC垂直,
故②不正確;
③根據(jù)①知道△ADE≌△AFE,得CD=BF,DE=EF,
∴BE+DC=BE+BF>DE=EF,
 故③錯(cuò)誤;
④∵∠FBE=45°+45°=90°,
∴BE2+BF2=EF2,
∵△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△AFB,
∴△AFB≌△ADC,
∴BF=CD,
又∵EF=DE,
∴BE2+CD2=DE2,故④正確.
故選B.
點(diǎn)評(píng):此題主要考查圖形的旋轉(zhuǎn)變換,解題時(shí)注意旋轉(zhuǎn)前后對(duì)應(yīng)的相等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案