【題目】如圖,在RtABC中,∠ACB90°,D、E分別是AB、AC的中點(diǎn),連接CD,過EEFDCBC的延長(zhǎng)線于F,若四邊形DCFE的周長(zhǎng)為18cm,AC的長(zhǎng)6cm,則AD的長(zhǎng)為( 。

A. 13cmB. 12cmC. 5cmD. 8cm

【答案】C

【解析】

由三角形中位線定理推知EDFC,2DE=BC,然后結(jié)合已知條件“EFDC”,利用兩組對(duì)邊相互平行得到四邊形DCFE為平行四邊形,根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半得到AB=2DC,即可得出四邊形DCFE的周長(zhǎng)=AB+BC,故BC=18-AB,然后根據(jù)勾股定理即可求得.

D、E分別是AB、AC的中點(diǎn),FBC延長(zhǎng)線上的一點(diǎn),

EDRtABC的中位線,

EDFCBC2DE,

EFDC

∴四邊形CDEF是平行四邊形;

DCEF

DCRtABC斜邊AB上的中線,

AB2DC,

∴四邊形DCFE的周長(zhǎng)=AB+BC,

∵四邊形DCFE的周長(zhǎng)為18cm,AC的長(zhǎng)6cm,

BC18AB,

∵在RtABC中,∠ACB90°,

AB2BC2+AC2,即AB2=(18AB2+62,

解得:AB10cm

AD5cm,

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,點(diǎn)E在邊BC上,BE=2CE,將矩形沿著過點(diǎn)E的直線翻折后,點(diǎn)C、D分別落在邊BC下方的點(diǎn)C′、D′處,且點(diǎn)C′、D′、B在同一條直線上,折痕與邊AD交于點(diǎn)F,D′FBE交于點(diǎn)G.設(shè)AB=t,那么EFG的周長(zhǎng)為______(用含t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,EBC中點(diǎn),AEBC于點(diǎn)E,AFCD于點(diǎn)F,CGAE,CGAF于點(diǎn)H,交AD于點(diǎn)G.

(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,射線OPAE,∠AOP的角平分線交射線AE于點(diǎn)B

1)若∠A=50°,求∠ABO的度數(shù);

2)如圖2,若點(diǎn)C在射線AE上,OB平分∠AOCAE于點(diǎn)BOD平分∠COPAE于點(diǎn)D,∠ABO-AOB=70°,求∠ADO的度數(shù);

3)如圖3,若∠A=α,依次作出∠AOP的角平分線OB,∠BOP的角平分線OB1,∠B1OP的角平分線OB2,∠Bn-1OP的角平分線OBn,其中點(diǎn)B,B1,B2,Bn-1,Bn都在射線AE上,試求∠ABnO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩張長(zhǎng)為4,寬為1矩形紙條交叉并旋轉(zhuǎn),使重疊部分成為一個(gè)菱形.旋轉(zhuǎn)過程中,當(dāng)兩張紙條垂直時(shí),菱形周長(zhǎng)的最小值是4,那么菱形周長(zhǎng)的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有ABC,其中A(﹣3,4),B(﹣42),C(﹣2,1).把ABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到A1B1C1.再把A1B1C1向左平移2個(gè)單位,向下平移5個(gè)單位得到A2B2C2

1)畫出A1B1C1A2B2C2

2)直接寫出點(diǎn)B1、B2坐標(biāo).

3Pa,b)是ABCAC邊上任意一點(diǎn),ABC經(jīng)旋轉(zhuǎn)平移后P對(duì)應(yīng)的點(diǎn)分別為P1、P2,請(qǐng)直接寫出點(diǎn)P1P2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是3cm,一個(gè)邊長(zhǎng)為1cm的小正方形從圖示位置開始,沿著正方形ABCD的邊ABBCCDDAAB連續(xù)地翻轉(zhuǎn),那么這個(gè)小正方形第2018次翻轉(zhuǎn)到箭頭與初始位置相同的方向時(shí),小正方形所處的位置( 。

A. AB邊上B. BC邊上C. CD邊上D. DA邊上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(a,2)、B(2,b)都在雙曲線(x<0),點(diǎn)P、Q分別是x軸、y軸上的動(dòng)點(diǎn),當(dāng)四邊形PABQ的周長(zhǎng)取最小值時(shí),PQ所在直線的解析式是,則k的值為(

A.-7B.-4C.3D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+cx軸交于點(diǎn)A﹣1,0)和點(diǎn)B30),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E、D是拋物線的頂點(diǎn).

1)求此拋物線的解析式;

2)求點(diǎn)C和點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案