已知二次函數(shù)圖象的頂點是(-1,2),且過點
(1)求二次函數(shù)的表達式;
(2)畫出該二次函數(shù)的圖象,并指出x為何值時,y隨的x增大而增大.

【答案】分析:(1)由于二次函數(shù)圖象的頂點是(-1,2),設頂點式為y=a(x+1)2+2,然后把點(0,)代入可求得a的值,從而確定二次函數(shù)解析式;
(2)先通過頂點式得到拋物線的對稱軸為直線x=-1,頂點坐標為(-1,2),再確定拋物線與x軸的交點坐標為(-3,0)和(1,0),然后畫圖,再圖象得到當x<-1時,y隨的x增大而增大.
解答:解:(1)設二次函數(shù)的解析式為y=a(x+1)2+2,
把點(0,)代入得=a+2,解得a=-,
所以二次函數(shù)的表達式為y=-(x+1)2+2=-x2-x+;

(2)∵二次函數(shù)的表達式為y=-(x+1)2+2,
∴拋物線的對稱軸為直線x=-1,
令y=0,則-(x+1)2+2=0,解得x1=-3,x2=1,
∴拋物線與x軸的交點坐標為(-3,0)和(1,0),頂點坐標為(-1,2).
如圖,
當x<-1時,y隨的x增大而增大.
點評:本題考查了待定系數(shù)法求二次函數(shù)的解析式:設二次函數(shù)的頂點式y(tǒng)=a(x-k)2+h,頂點坐標為(k,h);當a<0,拋物線開口向下,在對稱軸左側,y隨x的增大而增大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知二次函數(shù)圖象的頂點是(-1,2),且過點(0,
32
)

(1)求二次函數(shù)的表達式,并在圖中畫出它的圖象;
(2)求證:對任意實數(shù)m,點M(m,-m2)都不在這個二次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)圖象的頂點是(-1,2),且過點(0,
32
)

(1)求二次函數(shù)的表達式;
(2)畫出該二次函數(shù)的圖象,并指出x為何值時,y隨的x增大而增大.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》?碱}集(13):2.5 用三種方式表示二次函數(shù)(解析版) 題型:解答題

已知二次函數(shù)圖象的頂點是(-1,2),且過點
(1)求二次函數(shù)的表達式,并在圖中畫出它的圖象;
(2)求證:對任意實數(shù)m,點M(m,-m2)都不在這個二次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省揚州市高郵市九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

已知二次函數(shù)圖象的頂點是(-1,2),且過點
(1)求二次函數(shù)的表達式,并在圖中畫出它的圖象;
(2)求證:對任意實數(shù)m,點M(m,-m2)都不在這個二次函數(shù)的圖象上.

查看答案和解析>>

同步練習冊答案