【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過(guò)點(diǎn)B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)求證:AD=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在日歷中任意圈出一個(gè)3×3的正方形,則里面九個(gè)數(shù)不滿足的關(guān)系式是( 。
A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)
B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)
C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5
D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,
(1)求AB的長(zhǎng);
(2)求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班體育委員統(tǒng)計(jì)了全班45名同學(xué)一周的體育鍛煉時(shí)間(單位:小時(shí)),并繪制了如圖所示的折線統(tǒng)計(jì)圖,下列說(shuō)法中錯(cuò)誤的是( )
A. 鍛煉時(shí)間是9小時(shí)的人數(shù)最多 B. 鍛煉時(shí)間是10小時(shí)的有10人
C. 鍛煉時(shí)間是11小時(shí)的有4人 D. 鍛煉時(shí)間不低于9小時(shí)的有14人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0.
(1)有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)若x1,x2是方程的兩根且x12+x22=6,求m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一種公益叫“光盤”.所謂“光盤”,就是吃光你盤子中的食物,杜絕“舌尖上的浪費(fèi)”.某校九年級(jí)開(kāi)展“光盤行動(dòng)”宣傳活動(dòng),根據(jù)各班級(jí)參加該活動(dòng)的總?cè)舜握劬統(tǒng)計(jì)圖,下列說(shuō)法正確的是( )
A. 極差是40 B. 中位數(shù)是58 C. 平均數(shù)大于58 D. 眾數(shù)是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是正方形,G是BC上(除端點(diǎn)外)的任意一點(diǎn),DE⊥AG于點(diǎn)E,BF∥DE,交AG于點(diǎn)F.下列結(jié)論不一定成立的是【 】
A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2的圖象與一次函數(shù)y=x+b的圖象相交于A(﹣2,2)、B兩點(diǎn),從點(diǎn)A和點(diǎn)B分別引平行于y軸的直線與x軸分別交于C,D兩點(diǎn),點(diǎn)P(t,0),為線段CD上的動(dòng)點(diǎn),過(guò)點(diǎn)P且平行于y軸的直線與拋物線和直線分別交于R,S.
(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點(diǎn)B的坐標(biāo);
(2)當(dāng)SR=2RP時(shí),計(jì)算線段SR的長(zhǎng);
(3)若線段BD上有一動(dòng)點(diǎn)Q且其縱坐標(biāo)為t+3,問(wèn)是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空或填寫理由.
(1)如圖甲,∵∠ =∠ (已知);
∴AB∥CD( )
(2)如圖乙,已知直線a∥b,∠3=80°,求∠1,∠2的度數(shù).
解:∵a∥b,( )
∴∠1=∠4( )
又∵∠3=∠4( )
∠3=80°(已知)
∴∠1=( )(等量代換)
又∵∠2+∠3=180°
∴∠2=( )(等式的性質(zhì))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com