【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(xn+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說法正確的是________.(寫出所有正確說法的序號)

①當(dāng)x=1.7時,[x]+(x)+[x)=6;

②當(dāng)x=﹣2.1時,[x]+(x)+[x)=﹣7;

③方程4[x]+3x)+[x)=11的解為1x1.5

④當(dāng)﹣1x1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個交點.

【答案】②③

【解析】

試題解析:當(dāng)x=1.7時,

[x]+x+[x

=[1.7]+1.7+[1.7=1+2+2=5,故錯誤;

當(dāng)x=﹣2.1時,

[x]+x+[x

=[﹣2.1]+﹣2.1+[﹣2.1

=﹣3+﹣2+﹣2=﹣7,故正確;

當(dāng)1x1.5時,

4[x]+3x+[x

=4×1+3×2+1

=4+6+1

=11,故正確;

④∵﹣1x1時,

當(dāng)﹣1x﹣0.5時,y=[x]+x+x=﹣1+0+x=x﹣1,

當(dāng)﹣0.5x0時,y=[x]+x+x=﹣1+0+x=x﹣1,

當(dāng)x=0時,y=[x]+x+x=0+0+0=0

當(dāng)0x0.5時,y=[x]+x+x=0+1+x=x+1,

當(dāng)0.5x1時,y=[x]+x+x=0+1+x=x+1

∵y=4x,則x﹣1=4x時,得x=;x+1=4x時,得x=;當(dāng)x=0時,y=4x=0,

當(dāng)﹣1x1時,函數(shù)y=[x]+x+x的圖象與正比例函數(shù)y=4x的圖象有三個交點,故錯誤,

故答案為②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ADBC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.

1)求證:∠DCA=EBC;

2)延長BEADF,求證:AB2=AF·AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙OBC于點D.過點DEFAC,垂足為E,且交AB的延長線于點F

1)求證:EF是⊙O的切線;

2)已知AB4,AE3.求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經(jīng)過點A,反比例函數(shù)y2=的圖象經(jīng)過點B,則m的值是(  )

A.m=3B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中的點,將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點湘一比,記為,如點,則

1)若在直線上,求點湘一比及直線軸夾角的正切值;

2)已知點湘一比,且上,的半徑為,若點上,求湘一比的取值范圍;

3)設(shè)、為正整數(shù),且,對一切實數(shù),如果直線與二次函數(shù)交于、,且,求點湘一比的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點是反比例函數(shù)圖象上一點,則下列說法正確的是(

A.圖象位于二、四象限

B.當(dāng)時,的增大而減小

C.在函數(shù)圖象上

D.當(dāng)時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華在晚上由路燈A走向路燈B.當(dāng)他走到點P時,發(fā)現(xiàn)他身后影子的頂部剛好接觸到路燈A的底部;當(dāng)他向前再步行12m到達(dá)點Q時,發(fā)現(xiàn)他身前影子的頂部剛好接觸到路燈B的底部.已知小華的身高是1.6m,兩個路燈的高度都是9.6m,且APQB.

(1)求兩個路燈之間的距離;

(2)當(dāng)小華走到路燈B的底部時,他在路燈A下的影長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(MA,E三點在同一條直線上),測得電線桿頂端D的仰角∠=20°

1)求∠ABC;

2)求電線桿CD的高度.(結(jié)果精確到個位,參考數(shù)據(jù)sin20°≈0.3cos20°≈0.9,tan20°≈0.4,≈1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于原點和點,點在拋物線上.

1)求拋物線的表達(dá)式,并寫出它的對稱軸;

2)求的值;

3)點在拋物線的對稱軸上,如果,求點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案