如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)C的坐標(biāo)為(0,-2),交x軸于A、B兩點(diǎn),其中A(-1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點(diǎn)P(P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點(diǎn)Q,使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.
(1)y=2x2-2.(1,0);(2)(m,),(m,2m-2).(3)不存在滿足條件的點(diǎn)Q.
【解析】
試題分析:(1)由于拋物線的頂點(diǎn)C的坐標(biāo)為(0,-2),所以拋物線的對(duì)稱軸為y軸,且與y軸交點(diǎn)的縱坐標(biāo)為-2,即b=0,c=-2,再將A(-1,0)代入y=ax2+bx+c,求出a的值,由此確定該拋物線的解析式,然后令y=0,解一元二次方程求出x的值即可得到點(diǎn)B的坐標(biāo);
(2)設(shè)P點(diǎn)坐標(biāo)為(m,n).由于∠PDB=∠BOC=90°,則D與O對(duì)應(yīng),所以當(dāng)以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似時(shí),分兩種情況討論:①△OCB∽△DBP;②△OCB∽△DPB.根據(jù)相似三角形對(duì)應(yīng)邊成比例,得出n與m的關(guān)系式,進(jìn)而可得到點(diǎn)P的坐標(biāo);
(3)假設(shè)在拋物線上存在第一象限內(nèi)的點(diǎn)Q(x,2x2-2),使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形.過點(diǎn)Q作QE⊥l于點(diǎn)E.利用AAS易證△DBP≌△EPQ,得出BD=PE,DP=EQ.再分兩種情況討論:①P(m,);②P(m,2(m-1)).都根據(jù)BD=PE,DP=EQ列出方程組,求出x與m的值,再結(jié)合條件x>0且m>1即可判斷不存在第一象限內(nèi)的點(diǎn)Q,使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形.
試題解析:(1)∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為C(0,-2),
∴b=0,c=-2;
∵y=ax2+bx+c過點(diǎn)A(-1,0),
∴0=a+0-2,a=2,
∴拋物線的解析式為y=2x2-2.
當(dāng)y=0時(shí),2x2-2=0,
解得x=±1,
∴點(diǎn)B的坐標(biāo)為(1,0);
(2)設(shè)P(m,n).
∵∠PDB=∠BOC=90°,
∴當(dāng)以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似時(shí),分兩種情況:
①若△OCB∽△DBP,則,
即,
解得n=.
由對(duì)稱性可知,在x軸上方和下方均有一點(diǎn)滿足條件,
∴此時(shí)點(diǎn)P坐標(biāo)為(m,)或(m,)(舍);
②若△OCB∽△DPB,則,
即
解得n=2m-2.
由對(duì)稱性可知,在x軸上方和下方均有一點(diǎn)滿足條件,
∴此時(shí)點(diǎn)P坐標(biāo)為(m,2m-2)或(m,2-2m),
∵P在第一象限,m>1,
∴(m,2m-2)或(m,2-2m)舍
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為:(m,),(m,2m-2).
(3)假設(shè)在拋物線上存在第一象限內(nèi)的點(diǎn)Q(x,2x2-2),使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形.如圖,過點(diǎn)Q作QE⊥l于點(diǎn)E.
∵∠DBP+∠BPD=90°,∠QPE+∠BPD=90°,
∴∠DBP=∠QPE.
在△DBP與△EPQ中,
,
∴△DBP≌△EPQ,
∴BD=PE,DP=EQ.
分兩種情況:
①當(dāng)P(m,)時(shí),
∵B(1,0),D(m,0),E(m,2x2-2),
∴,
解得,(均不合題意舍去);
②當(dāng)P(m,2(m-1))時(shí),
∵B(1,0),D(m,0),E(m,2x2-2),
∴,
解得,(均不合題意舍去);
綜上所述,不存在滿足條件的點(diǎn)Q.
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市攸縣七年級(jí)上學(xué)期期末測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分8分,其中每問4分)
如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù).
(2)請(qǐng)通過計(jì)算說明OE平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
拋物線的對(duì)稱軸是( )
A.直線 B.直線 C.直線 D.直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濱州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
二次函數(shù)y?ax2bxc的圖象如圖所示,則一次函數(shù)y?bxb2?4ac與反比例函數(shù)y?在同一坐標(biāo)系內(nèi)的圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省濱州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,⊙O的直徑CD垂直弦AB于點(diǎn)E,且CE=2,OB=4,則AB的長(zhǎng)為( )
A. B.4 C.6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級(jí)上學(xué)期第二次質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級(jí)上學(xué)期第二次質(zhì)量抽測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,過點(diǎn)D作DC切⊙O于點(diǎn)C,若∠A=35°,則∠D= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級(jí)11月階段性檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、B(3,5),以AB為邊作如圖所示的正方形ABCD,頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線恰好經(jīng)過點(diǎn)D,P為拋物線上的一動(dòng)點(diǎn).
(1)直接寫出點(diǎn)D的坐標(biāo);
(2)求拋物線的解析式;
(3)求點(diǎn)P到點(diǎn)A的距離與點(diǎn)P到x軸的距離之差;
(4)當(dāng)點(diǎn)P位于何處時(shí),△APB的周長(zhǎng)有最小值,并求出△APB的周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣九年級(jí)上學(xué)期期末測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題
要把一根1m長(zhǎng)的銅絲截成兩段,用它們圍成兩個(gè)相似三角形,且相似比為,那么截成的兩段銅絲的長(zhǎng)度差應(yīng)是 m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com