【題目】我縣實(shí)施新課程改革后,學(xué)習(xí)的自主字習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類(lèi),A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖下列問(wèn)題:

1)本次調(diào)查中,張老師一共調(diào)査了  名同學(xué),其中C類(lèi)女生有  名,D類(lèi)男生有  名;

2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)為了共同進(jìn)步,張老師想從被調(diào)査的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)迸行一幫一互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

【答案】

120 ,2 ,1;(2)見(jiàn)解析.3,表格見(jiàn)解析.

【解析】

1)由扇形統(tǒng)計(jì)圖可知,特別好的占總數(shù)的15%,人數(shù)有條形圖可知3人,所以調(diào)查的樣本容量是:3÷15%,即可得出C類(lèi)女生和D類(lèi)男生人數(shù);

2)根據(jù)(1)中所求數(shù)據(jù)得出條形圖的高度即可;

3)根據(jù)被調(diào)査的A類(lèi)和D類(lèi)學(xué)生男女生人數(shù)列表即可得出答案.

解:(13÷15%=20

20×25%=5.女生:53=2,

125%50%15%=10%

20×10%=2,男生:21=1,

故答案為:20,21;

2)如圖所示:

3)根據(jù)張老師想從被調(diào)査的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)迸行一幫一互助學(xué)習(xí),可以將A類(lèi)與D類(lèi)學(xué)生分為以下幾種情況:

利用圖表可知所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于拋物線,下列說(shuō)法中錯(cuò)誤的是(

A.y的最小值為1

B.圖象頂點(diǎn)坐標(biāo)為(2,1),對(duì)稱(chēng)軸為直線x=2

C.當(dāng)x2時(shí),y的值隨x值的增大而增大,當(dāng)x2時(shí),y的值隨x值的增大而減小

D.它的圖象可以由的圖象向右平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)一元二次方程:M:N:,其中,以下列四個(gè)結(jié)論中,錯(cuò)誤的是( )

A、如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根;

B、如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同;

C、如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根;

D、如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yaxh2+ka0)的圖象是拋物線,定義一種變換,先作這條拋物線關(guān)于原點(diǎn)對(duì)稱(chēng)的拋物線y′,再將得到的對(duì)稱(chēng)拋物線y′向上平移mm0)個(gè)單位,得到新的拋物線ym,我們稱(chēng)ym叫做二次函數(shù)yaxh2+ka0)的m階變換.

1)已知:二次函數(shù)y2x+22+1,它的頂點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為   ,這個(gè)拋物線的2階變換的表達(dá)式為   

2)若二次函數(shù)M6階變換的關(guān)系式為y6′=(x12+5

二次函數(shù)M的函數(shù)表達(dá)式為   

若二次函數(shù)M的頂點(diǎn)為點(diǎn)A,與x軸相交的兩個(gè)交點(diǎn)中左側(cè)交點(diǎn)為點(diǎn)B,在拋物線y6′=(x12+5上是否存在點(diǎn)P,使點(diǎn)P與直線AB的距離最短,若存在,求出此時(shí)點(diǎn)P的坐標(biāo).

3)拋物線y=﹣3x26x+1的頂點(diǎn)為點(diǎn)A,與y軸交于點(diǎn)B,該拋物線的m階變換的頂點(diǎn)為點(diǎn)C.若△ABC是以AB為腰的等腰三角形,請(qǐng)直按寫(xiě)出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:b24ac;abc>0;2a﹣b=0;8a+c<0;9a+3b+c<0,其中結(jié)論正確的是   .(填正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是“用三角板畫(huà)圓的切線”的畫(huà)圖過(guò)程

如圖1,已知圓上一點(diǎn)A,畫(huà)過(guò)A點(diǎn)的圓的切線.

畫(huà)法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過(guò)點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過(guò)點(diǎn)B,畫(huà)出另一條直角邊所在的直線AD.

所以直線AD就是過(guò)點(diǎn)A的圓的切線.

請(qǐng)回答:該畫(huà)圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱(chēng)為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱(chēng)為圖形G的“特征值”

(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為 。

②拋物線y=x2+3x+3的“特征值”為

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。

①直接寫(xiě)出m= (用含c的式子表示)

②求此二次函數(shù)的表達(dá)式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請(qǐng)直接寫(xiě)出⊙M的“特征值”為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】西瓜經(jīng)營(yíng)戶(hù)以2/千克的價(jià)格購(gòu)進(jìn)批小型西瓜,以3/千克的價(jià)格出售,每天可售出200千克,為了促銷(xiāo),該經(jīng)營(yíng)戶(hù)決定降價(jià)銷(xiāo)售。經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價(jià)0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元。該經(jīng)營(yíng)戶(hù)要想每天盈利200元,應(yīng)將每千克小型西瓜的售價(jià)降低多少元?

1)若設(shè)應(yīng)將每千克的售價(jià)降低x元,那么每千克的利潤(rùn)為_____元,降價(jià)后何天售出數(shù)量為______千克;

2)請(qǐng)?jiān)诘?/span>(1)小題的基礎(chǔ)上,列出方程把此題解答完整。

查看答案和解析>>

同步練習(xí)冊(cè)答案