【題目】我市綠化部門決定利用現(xiàn)有的不同種類花卉搭配園藝造型,擺放于城區(qū)主要大道的兩側(cè)A、B兩種園藝造型均需用到杜鵑花,A種造型每個需用杜鵑花25盆,B種造型每個需用杜鵑花35盆,解答下列問題:

(1)已知人民大道兩側(cè)搭配的A、B兩種園藝造型共60個,恰好用了1700盆杜鵑花,A、B兩種園藝造型各搭配了多少個?

(2)如果搭配一個A種造型的成本W與造型個數(shù)的關(guān)系式為:W=100―x (0<x<50),搭配一個B種造型的成本為80現(xiàn)在觀海大道兩側(cè)也需搭配A、B兩種園藝造型共50個,要求每種園藝造型不得少于20個,并且成本總額y(元)控制在4500元以內(nèi). 以上要求能否同時滿足?請你通過計算說明理由.

【答案】(1) A種園藝造型搭配了40個,B種園藝造型搭配了20;(2) 當(dāng)時,的最大值為,4500,所以能同時滿足題設(shè)要求.

【解析】分析:(1)、設(shè)A種園藝造型搭配了x個,則B種園藝造型搭配了(60x)個,根據(jù)題意列出方程從而得出x的值;(2)、設(shè)A種園藝造型搭配了x個,則B種園藝造型搭配了(50x)個,根據(jù)題意得出y與x的函數(shù)關(guān)系式,得出最大值,從而可以判斷是否正確.

詳解:(1)設(shè)A種園藝造型搭配了x個,則B種園藝造型搭配了(60﹣x),

25x+35(60﹣x)=1700, 解得,x=40,60﹣x=20,

答:A種園藝造型搭配了40個,B種園藝造型搭配了20個;

(2)能同時滿足題設(shè)要求,

理由:設(shè)A種園藝造型搭配了x個,則B種園藝造型搭配了(50﹣x),

成本總額yA種園藝造型個數(shù)想x的函數(shù)關(guān)系式為:y=x(100﹣)+80(50﹣x)=﹣+20x+4000=,

x≥20,50﹣x≥20, 20≤x≤30, ∴當(dāng)x=20時,y取得最大值,此時y=4200,

4200<4500, ∴能同時滿足題設(shè)要求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(a ,2)是直線y=x上一點,以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內(nèi)⊙A上任意一點,則的最小值為(

A. 1 B. C. —1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由若干個完全相同的小正方體組成的一個幾何體。

1)圖中有   塊小正方體;

2)請畫出這個幾何體的左視圖和俯視圖;(用陰影表示)

3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和左視圖不變,那么最多可以再添加幾個小正方體?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線ykx+6和直線y=(k+1x+6k是正整數(shù))及x軸圍成的三角形面積為Skk12,3,…,8),則S1+S2+S3++S8的值是( 。

A. B. C. 16D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線分別從A、B兩地同時出發(fā)勻速前往C地(B在A、C兩地的途中).設(shè)甲、乙兩車距A地的路程分別為y、y(千米),行駛的時間為x(小時),y、y與x之間的函數(shù)圖象如圖所示.

(1)直接寫出y、y與x之間的函數(shù)表達(dá)式;

(2)如圖,過點(1,0)作x軸的垂線,分別交y、y的圖象于點M,N.求線段MN的長,并解釋線段MN的實際意義;

(3)在乙行駛的過程中,當(dāng)甲、乙兩人距A地的路程差小于30千米時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,=60°, AB=2,點EAB上的動點,作∠EDQ=60°交BC于點Q,點PAD上,PD=PE.

(1)求證:AE=BQ;

(2)連接PQ, EQ,當(dāng)∠PEQ=90°時,求的值;

(3)當(dāng)AE為何值時,△PEQ是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):

星期

增減

1)根據(jù)記錄可知前三天共生產(chǎn) 輛;

2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;

3)該廠實行計劃工資制,每輛車元,超額完成任務(wù)每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上任意兩點之間的距離均可用右﹣左表示,即右邊的數(shù)(較大)減去左邊的數(shù)(較小).已知數(shù)軸上兩點A、B對應(yīng)的數(shù)分別為﹣25,則A、B兩點之間的距離記為AB,且AB5﹣(﹣2)=7P為數(shù)軸上的動點,其對應(yīng)的數(shù)為x

1)若點PA,B兩點的距離相等,寫出點P對應(yīng)的數(shù);

2)數(shù)軸上是否存在點P,使點PA,B兩點的距離之和為11,若存在,請求出x的值;若不存在,請說明理由;

3)若點P在原點,現(xiàn)在AB,P三個點均向左勻速運(yùn)動,其中點P的速度為每秒1個單位;A,B兩點中有一個點速度與點P的速度一致,另一個點以每秒3單位的速度運(yùn)動;則幾秒后點PA,B兩點的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請根據(jù)圖中提供的信息,回答下列問題:

1)一個水瓶與一個水杯分別是多少元?

2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和nn10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)

查看答案和解析>>

同步練習(xí)冊答案