【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關系y=﹣5x2+20x,請根據(jù)要求解答下列問題:
(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是多少?
(2)在飛行過程中,小球從飛出到落地所用時間是多少?
(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?
【答案】(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是1s或3s;(2)在飛行過程中,小球從飛出到落地所用時間是4s;(3)在飛行過程中,小球飛行高度第2s時最大,最大高度是20m.
【解析】
(1)根據(jù)題目中的函數(shù)解析式,令y=15即可解答本題;
(2)令y=0,代入題目中的函數(shù)解析式即可解答本題;
(3)將題目中的函數(shù)解析式化為頂點式即可解答本題.
(1)當y=15時,
15=﹣5x2+20x,
解得,x1=1,x2=3,
答:在飛行過程中,當小球的飛行高度為15m時,飛行時間是1s或3s;
(2)當y=0時,
0═﹣5x2+20x,
解得,x3=0,x2=4,
∵4﹣0=4,
∴在飛行過程中,小球從飛出到落地所用時間是4s;
(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,
∴當x=2時,y取得最大值,此時,y=20,
答:在飛行過程中,小球飛行高度第2s時最大,最大高度是20m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQ與BC交于點G,求△EBG的周長是__________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,BC=BD=10,CD=4,AD=6.點P是線段BD上的動點,點E、Q分別是線段DA、BD上的點,且DE=DQ=BP,聯(lián)結EP、EQ.
(1)求證:EQ∥DC;
(2)如果△EPQ是以EQ為腰的等腰三角形,求線段BP的長;
(3)當BP=m(0<m<5)時,求∠PEQ的正切值.(用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=x2﹣2ax+4a+2(a是常數(shù)),
(Ⅰ)若該拋物線與x軸的一個交點為(﹣1,0),求a的值及該拋物線與x軸另一交點坐標;
(Ⅱ)不論a取何實數(shù),該拋物線都經(jīng)過定點H.
①求點H的坐標;
②證明點H是所有拋物線頂點中縱坐標最大的點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標為(-1,2),則點B1的坐標為( )
A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線經(jīng)過點A、B、C,已知A(-1,0),B(3,0),C(0,-3).
(1)求此拋物線的函數(shù)表達式;
(2)若P為線段BC上一點,過點P作軸的平行線,交拋物線于點D,當△BCD面積最大時,求點P的坐標;
(3)若M(m,0)是軸上一個動點,請求出CM+MB的最小值以及此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在線段AB上有一點C,在AB的同側作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直線BD與線段AE,線段CE分別交于點F,G.對于下列結論:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,則2AD2=DF·DG.其中正確的是( )
A.①②③④B.①②③C.①③④D.①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,M、N、C三點的坐標分別為(,1),(3,1),(3,0),點A為線段MN上的一個動點,連接AC,過點A作AB⊥AC交y軸于點B,當點A從M運動到N時,點B隨之運動,設點B的坐標為(0,b),則b的取值范圍是( 。
A.≤b≤1B.≤b≤1C.≤b≤D.≤b≤1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com