如圖,直線l與坐標(biāo)軸分別交于A、B兩點(diǎn),∠BAO=45°,點(diǎn)A坐標(biāo)為(8,0).動點(diǎn)P從點(diǎn)O出發(fā),沿折線段OBA運(yùn)動,到點(diǎn)A停止;同時動點(diǎn)Q也從點(diǎn)O出發(fā),沿線段OA運(yùn)動,到點(diǎn)A停止;它們的運(yùn)動速度均為每秒1個單位長度.

(1)求直線AB的函數(shù)關(guān)系式;
(2)若點(diǎn)A、B、O與平面內(nèi)點(diǎn)E組成的圖形是平行四邊形,請直接寫出點(diǎn)E的坐標(biāo);
(3)在運(yùn)動過程中,當(dāng)P、Q的距離為2時,求點(diǎn)P的坐標(biāo).
(1)y=-x+8;(2)(2)(8,8)、 (-8,8)、(8,-8);(3)(0,)、 (8-,2).

試題分析:(1)根據(jù)OA和OB的長度可求出A、B兩點(diǎn)的坐標(biāo);將A、B兩點(diǎn)的坐標(biāo)代入直線方程式中即可求出直線解析式;
(2)根據(jù)題意知:點(diǎn)E的位置有三處.
(3)設(shè)點(diǎn)P運(yùn)動t秒后PQ=2.由勾股定理可求出t的值,從而確定點(diǎn)P的坐標(biāo).
試題解析:(1)根據(jù)題意知:OB=8
∴A點(diǎn)坐標(biāo)為(0,8)
設(shè)直線AB的解析式為y=kx+b
把A、B兩點(diǎn)坐標(biāo)代入得:
 解得:
所以:直線AB的解析式為y=-x+8;
(2)(2)(8,8)、 (-8,8)、(8,-8);
(3)(0,)、 (8-,2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,反比例函數(shù)與一次函數(shù)的圖象交于A(3,1)、B(m,-3)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)若點(diǎn)P是直線上一點(diǎn),且OP=OA,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某移動通訊公司開設(shè)了兩種通訊業(yè)務(wù):“全球通”使用者先繳50元月租費(fèi),然后每通話1分鐘,再付話費(fèi)0.4元;“神舟行”不繳月租費(fèi),每通話1min付費(fèi)0.6元.若一個月內(nèi)通話x min,兩種方式的費(fèi)用分別為y1元和y2元.
(1)寫出y1、y2與x之間的函數(shù)關(guān)系式;
(2)一個月內(nèi)通話多少分鐘,兩種移動通訊費(fèi)用相同;
(3)你能為用戶設(shè)計(jì)一個方案,使用戶合理地選擇通信業(yè)務(wù)嗎?
(4)某人估計(jì)一個月內(nèi)通話300min,應(yīng)選擇哪種移動通訊合算些.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

正方形,,,…按如圖所示的方式放置,點(diǎn)和點(diǎn)分別在直線軸上,已知點(diǎn),則的坐標(biāo)是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線y=﹣x+8與x軸,y軸分別交于點(diǎn)A和B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的解析式為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A(1,0),B(4,0),M(5,3).動點(diǎn)P從點(diǎn)A出發(fā),沿x軸以每秒1個單位長的速度向右移動,且過點(diǎn)P的直線l:y=-x+b也隨之移動.設(shè)移動時間為t秒.

(1)當(dāng)t=1時,求l的解析式;
(2)若l與線段BM有公共點(diǎn),確定t的取值范圍;
(3)直接寫出t為何值時,點(diǎn)M關(guān)于l的對稱點(diǎn)落在y軸上.如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(-4,0),點(diǎn)P在射線AB上運(yùn)動,連結(jié)CP與y軸交于點(diǎn)D,連結(jié)BD.過P,D,B三點(diǎn)作⊙Q與y軸的另一個交點(diǎn)為E,延長DQ交⊙Q于點(diǎn)F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點(diǎn)P在線段AB(不包括A,B兩點(diǎn))上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點(diǎn)P在運(yùn)動過程中,是否存在以B,D,F(xiàn)為頂點(diǎn)的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點(diǎn)P的坐標(biāo):如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為鼓勵居民節(jié)約用水,某市決定對居民用水收費(fèi)實(shí)行“階梯價”,即當(dāng)每月用水量不超過15噸時(包括15噸),采用基本價收費(fèi);當(dāng)每月用水量超過15噸時,超過部分每噸采用市場價收費(fèi),小蘭家4、5月份的用水量及收費(fèi)情況如下表:
月份
用水量(噸)
水費(fèi)(元)
4
22
51
5
20
45
(1)分別求基本價和市場價.
(2)設(shè)每月用水量為n噸,應(yīng)繳水費(fèi)為m元,請寫出m與n之間的函數(shù)關(guān)系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費(fèi)多少元?

查看答案和解析>>

同步練習(xí)冊答案