如圖,對稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線第四象限上一動點(diǎn),四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)若S=24,試判斷?OEAF是否為菱形;
(4)若點(diǎn)E在(1)中的拋物線上,點(diǎn)F在對稱軸上,以O(shè)、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出點(diǎn)E、F的坐標(biāo);若不能,請說明理由.(第(4)問不寫解答過程,只寫結(jié)論)

【答案】分析:(1)已知了拋物線的對稱軸解析式,可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點(diǎn)坐標(biāo)代入求解即可.
(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點(diǎn)的橫坐標(biāo),用拋物線的解析式求出E點(diǎn)的縱坐標(biāo),那么E點(diǎn)縱坐標(biāo)的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進(jìn)而可得出S與x的函數(shù)關(guān)系式.
(3)將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點(diǎn)的坐標(biāo)和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.
(4)根據(jù)O、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形,利用平行四邊形的性質(zhì)得出即可.
解答:解:(1)因?yàn)閽佄锞的對稱軸是x=
設(shè)解析式為y=a(x-2+k.
把A(6,0),B(0,4)兩點(diǎn)坐標(biāo)代入上式,得 ,
解得a=,k=-
故拋物線解析式為y=(x-2-,頂點(diǎn)為( ,-).

(2)∵點(diǎn)E(x,y)在拋物線上,位于第四象限,且坐標(biāo)適合y=(x-2-
∴y<0,
即-y>0,-y表示點(diǎn)E到OA的距離.
∵OA是四邊形OEAF的對角線,
∴S=2S△OAE=2××OA•|y|=-6y=-4(x-2+25.
因?yàn)閽佄锞與x軸的兩個(gè)交點(diǎn)是(1,0)和(6,0),
所以自變量x的取值范圍是1<x<6.

(3)根據(jù)題意,當(dāng)S=24時(shí),即-4(x-2+25=24.
化簡,得(x-2=
解得x1=3,x2=4.
故所求的點(diǎn)E有兩個(gè),將x=3代入拋物線方程得y=-4,
分別為E1(3,-4),E2(4,-4),
點(diǎn)E1(3,-4)滿足OE=AE,
所以平行四邊形OEAF是菱形;
點(diǎn)E2(4,-4)不滿足OE=AE,
所以平行四邊形OEAF不是菱形;
∴不一定,由S=24可得x=3或x=4,當(dāng)時(shí)x=3是菱形,當(dāng)x=4時(shí)不是菱形.

(4)E1(2.5,-),F(xiàn)1(3.5,);E2),F(xiàn)2);E3),F(xiàn)3).
點(diǎn)評:此題主要考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的性質(zhì)、菱形的判定等知識.綜合性強(qiáng),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4)(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上的一動點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;①當(dāng)OEAF的面積為24時(shí),請判斷OEAF是否為菱形?②是否存在點(diǎn)E,使OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);

(2)設(shè)點(diǎn)E(,)是拋物線上一動點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形.求平行四邊形OEAF的面積S與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

     ①當(dāng)平行四邊形OEAF的面積為24時(shí),請判斷平行四邊形OEAF是否為菱形?

     ②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010—2011學(xué)年湖北省鄂州市九年級上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

如圖,對稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

【小題1】求拋物線解析式及頂點(diǎn)坐標(biāo);
【小題2】設(shè)點(diǎn)E(x,y)是拋物線第四象限上一動點(diǎn),四邊形OEAF是以O(shè)A為對角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍
【小題3】若S=24,試判斷OEAF是否為菱形。
【小題4】若點(diǎn)E在⑴中的拋物線上,點(diǎn)F在對稱軸上,以O(shè)、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出點(diǎn)E、F的坐標(biāo);若不能,請說明理由。(第⑷問不寫解答過程,只寫結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(重慶A卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。

(1)求點(diǎn)B的坐標(biāo);

(2)已知,C為拋物線與y軸的交點(diǎn)。

①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);

②設(shè)點(diǎn)Q是線段AC上的動點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆湖北省鄂州市九年級上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

如圖,對稱軸為直線的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

1.求拋物線解析式及頂點(diǎn)坐標(biāo);

2.設(shè)點(diǎn)E(x,y)是拋物線第四象限上一動點(diǎn),四邊形OEAF是以O(shè)A為對角線的平行四邊形,求OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍

3.若S=24,試判斷OEAF是否為菱形。

4.若點(diǎn)E在⑴中的拋物線上,點(diǎn)F在對稱軸上,以O(shè)、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出點(diǎn)E、F的坐標(biāo);若不能,請說明理由。(第⑷問不寫解答過程,只寫結(jié)論)

 

查看答案和解析>>

同步練習(xí)冊答案