【題目】如圖,O的直徑AB=2,點(diǎn)DAB的延長線上,DCO相切于點(diǎn)C,連接AC.若∠A=30°,CD長為( )

A. B. C. D.

【答案】D

【解析】

先連接BC,OC,由于AB 是直徑,可知∠BCA=90°,而∠A=30°,易求∠CBA,又DC是切線,利用弦切角定理可知∠DCB=A=30°,再利用三角形外角性質(zhì)可求∠D,再由切線的性質(zhì)可得∠BCD=A=30°,∠OCD=90°,易得OD,由勾股定理可得CD

如圖所示,連接BC,OC,

AB是直徑,

∴∠BCA=90°

又∵∠A=30°,

∴∠CBA=90°30°=60°

DC是切線,

∴∠BCD=A=30°,OCD=90°,

∴∠D=CBABCD=60°30°=30°,

AB=2,

OC=1,

OD=2,

∴CD=,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MAN=60°,點(diǎn)B在射線AM上,AB=4,點(diǎn)P為直線AN上一動(dòng)點(diǎn),以BP為邊作等邊三角形BPQ(點(diǎn)B,P,Q按順時(shí)針排列),點(diǎn)O是△BPQ的外心.

(1)如圖1,當(dāng)OB⊥AM時(shí),點(diǎn)O________∠MAN的平分線上(填“在”或“不在”);

(2)求證:當(dāng)點(diǎn)P在射線AN上運(yùn)動(dòng)時(shí),總有點(diǎn)O在∠MAN的平分線;

(3)當(dāng)點(diǎn)P在射線AN上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A不重合)時(shí),AO與BP交于點(diǎn)C,設(shè)AP=m,用m表示AC·AO;

(4)若點(diǎn)D在射線AN上,AD=2,圓I為△ABD的內(nèi)切圓.當(dāng)△BPQ的邊BP或BQ與圓I相切時(shí),請直接寫出點(diǎn)A與點(diǎn)O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點(diǎn)EAB 的中點(diǎn),連接CE交⊙O于點(diǎn)F,連接AF并延長交BC于點(diǎn)H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6,CH2,則AH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級男生1000米長跑的成績,從中隨機(jī)抽取了50名男生進(jìn)行測試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的得分進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成下面的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

等第

成績(得分)

頻數(shù)(人數(shù))

頻率

A

10

7

0.14

9

x

m

B

8

15

0.30

7

8

0.16

C

6

4

0.08

5

y

n

D

5分以下

3

0.06

合計(jì)


50

1.00

1)試直接寫出、y、mn的值;

2)求表示得分為C等的扇形的圓心角的度數(shù);

3)如果該校九年級共有男生200名,試估計(jì)這200名男生中成績達(dá)到A等和B等的人數(shù)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“停課不停學(xué)”期間,某校數(shù)學(xué)興趣小組對本校同學(xué)觀看教學(xué)視頻所使用的工具進(jìn)行了調(diào)查,并從中隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行分析,將分析結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)表與統(tǒng)計(jì)圖.

工具

人數(shù)

頻率

手機(jī)

44

a

平板

b

0.2

電腦

80

c

電視

20

d

不確定

16

0.08

請根據(jù)上述信息回答下列問題:

1)所抽取出來的同學(xué)共   人,表中a   ,b   

2)請補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校觀看教學(xué)視頻的學(xué)生總?cè)藬?shù)為2500人,則使用電腦的學(xué)生人數(shù)約   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,的直徑,,垂足為點(diǎn)平分

1的切線嗎?請說明理由;

2)若的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運(yùn)物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.

(1)請?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(jì)(噸)

C

   

   

240

D

   

x

260

總計(jì)(噸)

200

300

500

(2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余路線運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,

1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母;(保留作圖痕跡,不寫作法)

為邊在上方外作等邊三角形;

的中線;

2)計(jì)算:的長為_______

查看答案和解析>>

同步練習(xí)冊答案