【題目】如圖是某學校草場一角,在長為b米,寬為a米的長方形場地中間,有并排兩個大小一樣的籃球場,兩個籃球場中間以及籃球場與長方形場地邊沿的距離都為c米.
(1)用代數式表示這兩個籃球場的占地面積.
(2)當a=30,b=40,c=3時,計算出一個籃球場的面積.
科目:初中數學 來源: 題型:
【題目】有一數值轉換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現第1次輸出的結果是12,第2次輸出的結果是6,第3次輸出的結果是 ,依次繼續(xù)下去…,第2013次輸出的結果是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知OM、OA、ON是∠BOC內的三條射線,ON平分∠AOC,OM平分∠BOC,且∠AOB+∠MON=120°,則∠MON=______°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數;
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,FE⊥BC”,其它條件不變,求∠DFE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大小.
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=30,C為射線AB上一點,BC比AC的4倍少20,P,Q兩點分別從A,B兩點同時出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運動,運動時間為t秒,M為BP的中點,N為QM的中點,以下結論:①BC=2AC;②運動過程中,QM的長度保持不變;③AB=4NQ;④當BQ=PB時,t=12,其中正確結論的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”,高新區(qū)凌水河治理工程正式啟動,若由甲工程隊單獨完成需10個月;若由甲、乙兩工程隊合做4個月后,剩下工程由乙工程隊再做5個月可以完成。(1)乙工程隊單獨完成這項工程需幾個月的時間?
(2)已知甲工程隊每月施工費用為15萬元,比乙工程隊多6萬元,按要求該工程總費用不超過141萬元,工程必須在一年內竣工(包括12個月).為了確保經費和工期,采取甲、乙工程隊同時開工,甲工程隊做個月,乙工程隊做個月(均為整數)分工合作的方式施工,問有哪幾種施工方案?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com