【題目】如圖1,等腰△ABC中,AC=BC,點(diǎn)OAB邊上,以O為圓心的圓經(jīng)過點(diǎn)C,交AB邊于點(diǎn)D,EF為⊙O的直徑,EFBC于點(diǎn)G,且D的中點(diǎn).

(1)求證:AC是⊙O的切線;

(2)如圖2,延長CB交⊙O于點(diǎn)H,連接HDOE于點(diǎn)P,連接CF,求證:CF=DO+OP;

(3)在(2)的條件下,連接CD,若tanHDC=,CG=4,求OP的長.

【答案】(1)見解析;(2)見解析;(3)

【解析】試題分析: 連接OC 得到 得出即可證明AC的切線.

如圖2中,連接OC,首先證明再證明點(diǎn)P在以F為圓心FC為半徑的圓上,即可解決問題;

中,利用 求出根據(jù)勾股定理求得 Rt 中,根據(jù)勾股定理得, 利用中的結(jié)論即可求出的長度.

試題解析:1)證明:如圖1中,連接OC

∵點(diǎn)D的中點(diǎn),

=,

AC的切線,

2)證明:如圖2中,連接OC

EF垂直平分HC

∴點(diǎn)P在以F為圓心FC為半徑的圓上,

3如圖3,連接CO并延長交M,連接,

G,

中,

OGMH,

Rt 中,根據(jù)勾股定理得,

由(2)知,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系平面內(nèi),函數(shù)y=x0,m是常數(shù))的圖象經(jīng)過A1,4)、Ba,b),其中a1,過點(diǎn)Ax軸的垂線,垂足為C,過點(diǎn)By軸的垂線,垂足為D,連接ADAB,DCCB

1)求反比例函數(shù)解析式;

2)當(dāng)ABD的面積為S,試用a的代數(shù)式表示求S

3)當(dāng)ABD的面積為2時,判斷四邊形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù),下列說法中不正確的是( )

A. 圖像經(jīng)過點(diǎn)(1.-2

B. 圖像分布在第二第四象限

C. x>0時,yx增大而增大

D. 若點(diǎn)AB)在圖像上,若,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)ab,表示A、B兩點(diǎn)之間的距離。當(dāng)AB兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(假設(shè)A在原點(diǎn)),如圖①,;

當(dāng)A、B兩點(diǎn)都在原點(diǎn)右側(cè)時,如圖②,;

當(dāng)AB兩點(diǎn)都在原點(diǎn)左側(cè)時,如圖③,

當(dāng)AB兩點(diǎn)在原點(diǎn)兩側(cè)時,如圖④,;

請根據(jù)上述結(jié)論,回答下列問題:

(1)數(shù)軸上表示25的兩點(diǎn)問距離是______,數(shù)軸上表示2-6的兩點(diǎn)間距高是_________,數(shù)軸上表示-13的兩點(diǎn)間距離是____________.

(2)數(shù)軸上表示x-1的兩點(diǎn)AB之間的距離可表示為_________,若|AB|=2,則x的值為_____________.

(3)當(dāng)取最小值時,請寫出所有符合條件的x的整數(shù)值_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20183月,某市教育主管部門在初中生中開展了文明禮儀知識競賽活動,活動結(jié)束后,隨機(jī)抽取了部分同學(xué)的成績(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計圖表.

調(diào)查結(jié)果統(tǒng)計表

組別

 成績分組(單位:分)

 頻數(shù)

 頻率

 A

 80x85

 50

 0.1

 B

 85x90

 75

 C

 90x95

 150

 c

 D

 95x100

 a

 合計

 b

1

根據(jù)以上信息解答下列問題:

(1)統(tǒng)計表中,a=_____,b=_____,c=_____;

(2)扇形統(tǒng)計圖中,m的值為_____,“C”所對應(yīng)的圓心角的度數(shù)是_____

(3)若參加本次競賽的同學(xué)共有5000人,請你估計成績在95分及以上的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接期中考試,小強(qiáng)對考試前剩余時間作了一個安排,他把計劃復(fù)習(xí)重要內(nèi)容的時間用一個四邊形圈起來.如圖,他發(fā)現(xiàn),用這樣的四邊形圈起來五個數(shù)的和恰好是5的倍數(shù),他又試了幾個位置,都符合這樣的特征。

1)若設(shè)這五個數(shù)中間的數(shù)為a,請你用整式的加減說明其中的道理.

2)這五個數(shù)的和能為150嗎?若能,請寫出中間那個數(shù),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:梯形中,,聯(lián)結(jié)(如圖1. 點(diǎn)沿梯形的邊從點(diǎn)移動,設(shè)點(diǎn)移動的距離為.

1)求證:;

2)當(dāng)點(diǎn)從點(diǎn)移動到點(diǎn)時,的函數(shù)關(guān)系(如圖2)中的折線所示. 試求的長;

3)在(2)的情況下,點(diǎn)從點(diǎn)移動的過程中,是否可能為等腰三角形?若能,請求出所有能使為等腰三角形的的取值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),P為ABC所在平面上一點(diǎn),且APB=BPC=CPA=120°,則點(diǎn)P叫做ABC的費(fèi)馬點(diǎn).

(1)如果點(diǎn)P為銳角ABC的費(fèi)馬點(diǎn),且ABC=60°.

①求證:ABP∽△BCP;

②若PA=3,PC=4,則PB=

(2)已知銳角ABC,分別以AB、AC為邊向外作正ABE和正ACD,CE和BD 相交于P點(diǎn).如圖(2)

①求CPD的度數(shù);

②求證:P點(diǎn)為ABC的費(fèi)馬點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案