【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點B作BM⊥x軸,垂足為M,BM=OM,OB=2,點A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
【答案】(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=2x+2;(2)4.
【解析】
試題分析:(1)根據(jù)題意可得B的坐標(biāo),從而可求得反比例函數(shù)的解析式,進(jìn)行求得點A的坐標(biāo),從而可求得一次函數(shù)的解析式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式可以求得點C,點M,點B,點O的坐標(biāo),從而可求得四邊形MBOC的面積.
試題解析:(1)由題意可得,
BM=OM,OB=2,
∴BM=OM=2,
∴點B的坐標(biāo)為(﹣2,﹣2),
設(shè)反比例函數(shù)的解析式為y=,
則﹣2=,得k=4,
∴反比例函數(shù)的解析式為y=,
∵點A的縱坐標(biāo)是4,
∴4=,得x=1,
∴點A的坐標(biāo)為(1,4),
∵一次函數(shù)y=mx+n(m≠0)的圖象過點A(1,4)、點B(﹣2,﹣2),
∴,得,
即一次函數(shù)的解析式為y=2x+2;
(2)∵y=2x+2與y軸交與點C,
∴點C的坐標(biāo)為(0,2),
∵點B(﹣2,﹣2),點M(﹣2,0),點O(0,0),
∴OM=2,OC=2,MB=2,
∴四邊形MBOC的面積是:=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)點D為AB的中點,DE交AC于點P,DF經(jīng)過點C.
(1)求∠ADE的度數(shù);
(2)如圖②,將△DEF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,將△ABC沿DE折疊,使頂點C落在△ABC三邊的垂直平分線的交點O處,若BE=BO,則∠BOE=____________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“成自”高鐵自貢仙市段在建設(shè)時,甲、乙兩個工程隊計劃參與該項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工30天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過40天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程由甲乙兩隊合做天完成,廠家需付甲乙兩隊共元;乙丙兩隊合做天完成,廠家需付乙丙兩隊共元;甲丙兩隊合做天完成全部工程的,廠家需付甲丙兩隊共元.
(1)求甲、乙、丙各隊單獨完成全部工程各需多少天?
(2)若要求不超過天完成全啊工程,問可由哪隊單獨完成此項工程花錢最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點P在A,B兩點之間運(yùn)動,問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點P在A,B兩點外側(cè)運(yùn)動,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料:
我們已經(jīng)學(xué)過將一個多項式分解因式的方法有提公因式法和運(yùn)用公式法,其實分解因式的方法還有分組分解法、拆項法、十字相乘法等等.
(1)分組分解法:將一個多項式適當(dāng)分組后,可提公因式或運(yùn)用公式繼續(xù)分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
2xy+y2﹣1+x2
=x2+2xy+y2﹣1
=(x+y)2﹣1
=(x+y+1)(x+y﹣1)
(2)拆項法:將一個多項式的某一項拆成兩項后,可提公因式或運(yùn)用公式繼續(xù)分解的方法.如:
x2+2x﹣3
=x2+2x+1﹣4
=(x+1)2﹣22
=(x+1+2)(x+1﹣2)
=(x+3)(x﹣1)
請你仿照以上方法,探索并解決下列問題:
(1)分解因式:
(2)分解因式:x2﹣6x﹣7;
(3)分解因式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB: 交y軸于點A,交x軸于點B,過點E(2,0)作x軸的垂線EF交AB于點D,點P是垂線EF上一點,且S△ADP=2,以PB為邊在第一象限作等腰Rt△BPC,則點C的坐標(biāo)為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com